39 research outputs found

    Nerve growth factor (NGF) has an anti-tumor effects through perivascular innervation of neovessels in HT1080 fibrosarcoma and HepG2 hepatitis tumor in nude mice

    Get PDF
    This study investigated whether NGF prevents tumor growth by promoting neuronal regulation of tumor blood flow. HT1080 fibrosarcoma cells or HepG2 hepatitis cells were subcutaneously implanted into nude mice. On Day 21 after the implantation of tumor cells, human NGF (40 or 80 ng/h for 14 days) was administered using a micro-osmotic pump. Growth rates of both tumors were significantly inhibited by the treatment of NGF, and the survival rate was also extended. Significant suppression of HT1080 tumor growth lasted after withdrawing NGF. NGF markedly increased the density of α-smooth muscle actin (α-SMA)-immunoreactive (ir) cells without changing neovessel density in HT1080 tumor tissues. Double immunostaining demonstrated protein gene product (PGP) 9.5-ir nerves around α-SMA-ir cells were found in HT1080 tumor tissue treated with NGF. The blood flow in HepG2 tumors treated with saline was significantly higher than in the non-tumor control area, but the tumor blood flow was markedly reduced by NGF treatment. In in vitro studies, NGF significantly accelerated migration of aortic smooth muscle cells but not endothelial cells, whereas NGF had no cytotoxic action on both cells. NGF inhibits tumor growth via indirect action, probably through innervation and maturation of tumor neovasculature, which regulates blood flow into tumor tissues

    Angiotensin II type 2 receptors facilitate reinnervation of phenol-lesioned vascular calcitonin gene-related peptide (CGRP)-containing nerves in rat mesenteric arteries

    Get PDF
    The present study was designed to investigate involvement of angiotensin (Ang) II type 2 receptors (AT2 receptors) in restoration of perivascular nerve innervation injured by topical phenol treatment. Male Wistar rats underwent in vivo topical application of 10% phenol around the superior mesenteric artery. After phenol treatment, animals were subjected to immunohistochemistry of the third branch of small arteries, Western blot analysis of AT2 receptor protein expression in dorsal root ganglia (DRG) and studies of mesenteric neurogenic vasoresponsiveness. Ang II (750 ng/kg/day), nerve growth factor (NGF; 20 μg/kg/day) and PD123,319 (AT2 receptor antagonist; 10 mg/kg/day) were intraperitoneally administered for 7 days using osmotic mini-pumps immediately after topical phenol treatment. Losartan (AT1 receptor antagonist) was administered in drinking water (0.025%). Phenol treatment markedly reduced densities of both calcitonin gene-related peptide (CGRP)-like immunoreactivity (LI)- and neuropeptide Y (NPY)-LI-containing fibers. NGF restored densities of both nerve fibers to the Sham control level. Coadministration of Ang II and losartan significantly increased the density of CGRP-LI-fibers but not NPY-LI-fibers compared with saline control. The increase of the density of CGRP-LI-fibers by coadministration of Ang II and losartan was suppressed by adding PD123,319. Coadministration of Ang II and losartan ameliorated reduction of CGRP nerve-mediated vasodilation of perfused mesenteric arteries caused by phenol treatment. The AT2 receptor protein expression detected in DRG was markedly increased by NGF. These results suggest that selective stimulation of AT2 receptors by Ang II facilitates reinnervation of mesenteric perivascular CGRP-containing nerves injured by topical phenol application in the rat.</p

    Muscarinic acetylcholine receptor M1 and M3 subtypes mediate acetylcholine-induced endothelium-independent vasodilatation in rat mesenteric arteries

    Get PDF
    The present study investigated pharmacological characterizations of muscarinic acetylcholine receptor (AChR) subtypes involving ACh-induced endothelium-independent vasodilatation in rat mesenteric arteries. Changes in perfusion pressure to periarterial nerve stimulation and ACh were measured before and after the perfusion of Krebs solution containing muscarinic receptor antagonists. Distributions of muscarinic AChR subtypes in mesenteric arteries with an intact endothelium were studied using Western blotting. The expression level of M1 and M3 was significantly greater than that of M2. Endothelium removal significantly decreased expression levels of M2 and M3, but not M1. In perfused mesenteric vascular beds with intact endothelium and active tone, exogenous ACh (1, 10, and 100 nmol) produced concentration-dependent and long-lasting vasodilatations. In endothelium-denuded preparations, relaxation to ACh (1 nmol) disappeared, but ACh at 10 and 100 nmol caused long-lasting vasodilatations, which were markedly blocked by the treatment of pirenzepine (M1 antagonist) or 4-DAMP (M1 and M3 antagonist) plus hexamethonium (nicotinic AChR antagonist), but not methoctramine (M2 and M4 antagonist). These results suggest that muscarinic AChR subtypes, mainly M1, distribute throughout the rat mesenteric arteries, and that activation of M1 and/or M3 which may be located on CGRPergic nerves releases CGRP, causing an endothelium-independent vasodilatation

    Muscarinic acetylcholine receptor M1 and M3 subtypes mediate acetylcholine-induced endothelium-independent vasodilatation in rat mesenteric arteries

    Get PDF
    The present study investigated pharmacological characterizations of muscarinic acetylcholine receptor (AChR) subtypes involving ACh-induced endothelium-independent vasodilatation in rat mesenteric arteries. Changes in perfusion pressure to periarterial nerve stimulation and ACh were measured before and after the perfusion of Krebs solution containing muscarinic receptor antagonists. Distributions of muscarinic AChR subtypes in mesenteric arteries with an intact endothelium were studied using Western blotting. The expression level of M1 and M3 was significantly greater than that of M2. Endothelium removal significantly decreased expression levels of M2 and M3, but not M1. In perfused mesenteric vascular beds with intact endothelium and active tone, exogenous ACh (1, 10, and 100 nmol) produced concentration-dependent and long-lasting vasodilatations. In endothelium-denuded preparations, relaxation to ACh (1 nmol) disappeared, but ACh at 10 and 100 nmol caused long-lasting vasodilatations, which were markedly blocked by the treatment of pirenzepine (M1 antagonist) or 4-DAMP (M1 and M3 antagonist) plus hexamethonium (nicotinic AChR antagonist), but not methoctramine (M2 and M4 antagonist). These results suggest that muscarinic AChR subtypes, mainly M1, distribute throughout the rat mesenteric arteries, and that activation of M1 and/or M3 which may be located on CGRPergic nerves releases CGRP, causing an endothelium-independent vasodilatation

    Effect of postprandial hyperglycemia and hyperinsulinemia on vascular responsiveness

    Get PDF
    Recent clinical studies demonstrated that transient postprandial hyperglycemia and hyperinsulinemia may contribute to the development of hypertension. Therefore, we investigated influence of acute hyperglycemia and/or hyperinsulinemia induced by glucose or insulin infusion on neuronal and humoral control of vascular tone in rats. Euglycemic male Wistar rats were pithed under anesthesia and arterial blood pressure was measured. Changes in vascular responses to spinal cord stimulation (SCS) and intravenous bolus injections of noradrenaline, angiotensin II, calcitonin generelated peptide (CGRP), acetylcholine and sodium nitroprusside (SNP) were studied by infusing various concentration of glucose or insulin. Continuous glucose infusion, which increased both blood glucose and serum insulin levels, significantly augmented adrenergic nerve-mediated pressor responses to SCS without affecting injection of pressor responses to noradrenaline or angiotensin II. In pithed rats with artificially increased blood pressure and blockade of autonomic outflow, glucose infusion attenuated CGRPergic nerve-depressor responses to SCS without affecting depressor responses to injection of CGRP, acetylcholine or SNP. In pithed rats treated with octreotide, which increased blood glucose without increasing serum insulin levels, glucose infusion caused only significant augmentation of adrenergic nervemediated pressor responses. Combined infusion of insulin and glucose, which resulted in increased serum insulin levels with euglycemic, significantly augmented adrenergic nerve-mediated pressor responses and attenuated CGRPergic nerve-mediated depressor responses. The present results suggest that acute hyperglycemia and hyperinsulinemia increases adrenergic nerve-mediated vasoconstriction, which is partly associated with the blunted CGRPergic nerve function, and that plasma insulin concentration associated with hyperglycemia may be responsible for alteration of neuronal vascular regulation
    corecore