129 research outputs found

    Drop mobility on superhydrophobic microstructured surfaces with wettability contrasts

    Get PDF
    Manipulation of drop motion has attracted considerable attention recently as it is pertinent to industrial/biological applications such as microfluidics. Wettability gradients/contrasts applied to microtextured, superhydrophobic surfaces are probable candidates for engineering drop motion by virtue of their wettability controllability and low contact angle hysteresis. In the present work, we present a systematic study of drop mobility induced via wettability contrasts. A millimetre-sized water drop, placed on the boundary between two surfaces with distinct, uniform arrays of pillars, immediately moved toward the surface more densely populated with asperities, which was relatively more hydrophilic. The velocity of the motion was found to increase proportionally with the difference in pillar densities on each surface, in circumstances where the rear side surface had sufficiently small contact angle hysteresis. To elucidate the underlying mechanism of drop motion, we implemented a surface energy analysis for each motion event. Motion was initiated by the excess surface free energy due to drop deformation and directed in favour of energy minimisation. Lastly, we propose a theory to predict the direction of the drop which at the same time acts as the criterion for the motion to ensue

    “Biodrop” Evaporation and Ring-Stain Deposits:The Significance of DNA Length

    Get PDF
    Small sessile drops of water containing either long or short strands of DNA (“biodrops”) were deposited on silicon substrates and allowed to evaporate. Initially, the triple line (TL) of both types of droplet remained pinned but later receded. The TL recession mode continued at constant speed until almost the end of drop lifetime for the biodrops with short DNA strands, whereas those containing long DNA strands entered a regime of significantly lower TL recession. We propose a tentative explanation of our observations based on free energy barriers to unpinning and increases in the viscosity of the base liquid due to the presence of DNA molecules. In addition, the structure of DNA deposits after evaporation was investigated by AFM. DNA self-assembly in a series of perpendicular and parallel orientations was observed near the contact line for the long-strand DNA, while, with the short-stranded DNA, smoother ring-stains with some nanostructuring but no striations were evident. At the interior of the deposits, dendritic and faceted crystals were formed from short and long strands, respectively, due to diffusion and nucleation limited processes, respectively. We suggest that the above results related to the biodrop drying and nanostructuring are indicative of the importance of DNA length, i.e., longer DNA chains consisting of linearly bonded shorter, rod-like DNA strands

    Effect of ambient pressure on Leidenfrost temperature

    Get PDF

    Influence of Local Heating on Marangoni Flows and Evaporation Kinetics of Pure Water Drops

    Get PDF
    The effect of localized heating on the evaporation of pure sessile water drops was probed experimentally by a combination of infrared thermography and optical imaging. In particular, we studied the effect of three different heating powers and two different locations, directly below the center and edge of the drop. In all cases, four distinct stages were identified according to the emerging thermal patterns. In particular, depending on heating location, recirculating vortices emerge that either remain pinned or move azimuthally within the drop. Eventually, these vortices oscillate in different modes depending on heating location. Infrared data allowed extraction of temperature distribution on each drop surface. In turn, the flow velocity in each case was calculated and was found to be higher for edge heating, due to the one-directional nature of the heating. Additionally, calculation of the dimensionless Marangoni and Rayleigh numbers yielded the prevalence of Marangoni convection. Heating the water drops also affected the evaporation kinetics by promoting the "stick-slip" regime. Moreover, both the total number of depinning events and the pinning strength were found to be highly dependent on heating location. Lastly, we report a higher than predicted relationship between evaporation rate and heating temperature, due to the added influence of the recirculating flows on temperature distribution and hence evaporation flux

    Thermal conductivity of liquid/carbon nanotube core-shell nanocomposites

    Get PDF
    Hollow carbon nanotubes (CNTs) were impregnated with an ionic liquid, resulting in a composite core-shell nanostructure. Liquid infusion was verified by transmission electron microscopy and rigorous observations unveiled that the nanocomposite is stable, i.e., liquid did not evaporate owing to its low vapor pressure. A series of individual nanostructures were attached on T-type heat sensors and their thermal behavior was evaluated. The liquid core was found to reduce the thermal conductivity of the base structure, CNT, from ca. 28 W/mK to ca. 15 W/mK. These findings could contribute to a better understanding of nanoscale thermal science and potentially to applications such as nanodevice thermal management and thermoelectric devices
    • 

    corecore