33 research outputs found

    Identification of in vivo Essential Genes of Vibrio vulnificus for Establishment of Wound Infection by Signature-Tagged Mutagenesis

    Get PDF
    Vibrio vulnificus can cause severe necrotic lesions within a short time. Recently, it has been reported that the numbers of wound infection cases in healthy hosts are increasing, for which surgical procedures are essential in many instances to eliminate the pathogen owing to its rapid proliferation. However, the mechanisms by which V. vulnificus can achieve wound infection in healthy hosts have not been elucidated. Here, we advance a systematic understanding of V. vulnificus wound infection through genome-wide identification of the relevant genes. Signature-tagged mutagenesis (STM) has been developed to identify functions required for the establishment of infection including colonization, rapid proliferation, and pathogenicity. Previously, STM had been regarded to be unsuitable for negative selection to detect the virulence genes of V. vulnificus owing to the low colonization and proliferation ability of this pathogen in the intestinal tract and systemic circulation. Alternatively, we successfully identified the virulence genes by applying STM to a murine model of wound infection. We examined a total of 5418 independent transposon insertion mutants by signature-tagged transposon mutagenesis and detected 71 clones as attenuated mutants consequent to disruption of genes by the insertion of a transposon. This is the first report demonstrating that the pathogenicity of V. vulnificus during wound infection is highly dependent on its characteristics: flagellar-based motility, siderophore-mediated iron acquisition system, capsular polysaccharide, lipopolysaccharide, and rapid chromosome partitioning. In particular, these functions during the wound infection process and are indispensable for proliferation in healthy hosts. Our results may thus allow the potential development of new strategies and reagents to control the proliferation of V. vulnificus and prevent human infections

    MukB Is a Gene Necessary for Rapid Proliferation of Vibrio vulnificus in the Systemic Circulation but Not at the Local Infection Site in the Mouse Wound Infection Model

    No full text
    Vibrio vulnificus causes rapid septicemia in susceptible individuals who have ingested contaminated foods or have open wounds exposed to seawater contaminated with the bacteria. Despite antibiotic therapy and aggressive debridement, mortality from septicemia is high. In this study, we showed that MukB mutation (mukB::Tn) affected the proliferation of V. vulnificus in the systemic circulation but not at the inoculation site in the wound infection model. A comparison of mukB::Tn with WT and a mukB complement strain (mukB::Tn/pmukB) on the bacterial burden in the muscle at the infection site showed that spreading and proliferation of the mukB::Tn strain was similar to those of the other strains. However, the bacterial burden of mukB::Tn in the spleen was reduced compared to that of the WT strain in the wound infection model. In a competition experiment, we found a lower bacterial burden of mukB::Tn in the spleen than that of the WT strain infecting the systemic circulation. Here, we report on a gene required for the rapid proliferation of V. vulnificus only in the systemic circulation and potentially required for its survival. Our finding may provide a novel therapeutic target for V. vulnificus septicemia

    Metabolic Changing in V. vulnificus-Infected Tissue

    Get PDF
    Vibrio vulnificus is a bacterium that inhabits warm seawater or brackish water environments and causes foodborne diseases and wound infections. In severe cases, V. vulnificus invades the skeletal muscle tissue, where bacterial proliferation leads to septicemia and necrotizing fasciitis with high mortality. Despite this characteristic, information on metabolic changes in tissue infected with V. vulnificus is not available. Here, we elucidated the metabolic changes in V. vulnificus-infected mouse skeletal muscle using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Metabolome analysis revealed changes in muscle catabolites and energy metabolites during V. vulnificus infection. In particular, succinic acid accumulated but fumaric acid decreased in the infected muscle. However, the virulence factor deletion mutant revealed that changes in metabolites and bacterial proliferation were abolished in skeletal muscle infected with a multifunctional-autoprocessing repeats-in-toxin (MARTX) mutant. On the other hand, mice that were immunosuppressed via cyclophosphamide (CPA) treatment exhibited a similar level of bacterial counts and metabolites between the wild type and MARTX mutant. Therefore, our data indicate that V. vulnificus induces metabolic changes in mouse skeletal muscle and proliferates by using the MARTX toxin to evade the host immune system. This study indicates a new correlation between V. vulnificus infections and metabolic changes that lead to severe reactions or damage to host skeletal muscle

    Relationship between localization on cellular membranes and cytotoxicity of Vibrio vulnificus hemolysin.

    Get PDF
    Vibrio vulnificus secretes a hemolysin/cytolysin (VVH) that induces cytolysis in target cells. A detergent resistant membrane domain (DRM) fraction of the cells after sucrose gradient centrifugation includes cholesterol-rich membrane microdomains which have been called "lipid rafts". It was reported that some pore-forming toxins require association with DRM and/or lipid rafts to exert their cytotoxicity. It has also been thought that cellular cholesterol is involved in VVH cytotoxicity because VVH cytotoxicity was inhibited by pre-incubation with cholesterol. However, both cellular localization and mode of action of VVH cytotoxicity remain unclear. In this study, we investigated the relationship between VVH localization on the cellular membrane and its cytotoxicity. Oligomers of VVH were detected from DRM fractions by sucrose gradient ultracentrifugation but all of these oligomers shifted from DRM fractions to non-DRM fractions after treatment with methyl-beta-cyclodextrin (MβCD), a cholesterol sequestering agent. On the other hand, immunofluorescence analysis showed that VVH did not co-localize with major lipid raft markers on cellular membrane of CHO cells. These data suggested that VVH localized at membrane regions which are relatively abundant in cholesterol but which are not identical with lipid rafts. To determine the linkage between localization and cytotoxicity of VVH, cytotoxicity was evaluated in MβCD-treated CHO cells. The cytotoxicity of VVH was not decreased by the MβCD treatment. In addition, the amount of VVH oligomer did not decrease in MβCD-treated CHO cells. Thus, we found that the amount of oligomer on cellular membrane is important for induction of cytotoxicity, whereas localization to lipid rafts on the cellular membrane was not essential to cytotoxicity

    Assessment of DNA damage in multiple organs of mice after whole body X-irradiation using the comet assay

    No full text
    The comet assay was performed to elucidate the linearity of calibration curves and detection limits for DNA damage in multipleorgans of whole body X-irradiated mice, and rates of reduction in DNA damage by DNA repair during the irradiation period wereestimated in the respective organs by comparing the rates of increase in DNA damage at different absorbed dose rates of X-rays.Of the assay parameters, tail length and the percentage DNA in the tail showed a higher sensitivity to DNA damage in most organsthan Olive tail moment. Data at the higher absorbed dose rates (2.22 or 1.44 Gy/min) showed good correlations between absorbeddoses and these two parameters, with correlation coefficients of more than 0.7 in many organs. However, this assay had difficultydetecting DNA damage at the lower absorption dose rate (0.72 Gy/min). The estimated rates of increase in DNA damage and thoseof DNA repair during the irradiation period in the respective organs suggested differences in the radiosensitivity of nuclear DNAand DNA repair capacity among organs. Our results indicated that absorbed dose rates of 1.0–1.3 Gy/min or greater were needed toinduce detectable DNA damages by the comet assay in many organs
    corecore