878 research outputs found
Synergistic role of fission yeast Alp16GCP6 and Mzt1MOZART1 in γ-tubulin complex recruitment to mitotic spindle pole bodies and spindle assembly
In fission yeast, γ-tubulin ring complex (γTuRC)–specific components Gfh1GCP4, Mod21GCP5, and Alp16GCP6 are nonessential for cell growth. Of these deletion mutants, only alp16Δ shows synthetic lethality with temperature-sensitive mutants of Mzt1MOZART1, a component of the γTuRC required for recruitment of the complex to microtubule-organizing centers. γ-Tubulin small complex levels at mitotic spindle pole bodies (SPBs, the centrosome equivalent in fungi) and microtubule levels for preanaphase spindles are significantly reduced in alp16Δ cells but not in gfh1Δ or mod21Δ cells. Furthermore, alp16Δ cells often form monopolar spindles and frequently lose a minichromosome when the spindle assembly checkpoint is inactivated. Alp16GCP6 promotes Mzt1-dependent γTuRC recruitment to mitotic SPBs and enhances spindle microtubule assembly in a manner dependent on its expression levels. Gfh1GCP4 and Mod21GCP5 are not required for Alp16GCP6-dependent γTuRC recruitment. Mzt1 has an additional role in the activation of the γTuRC for spindle microtubule assembly. The ratio of Mzt1 to γTuRC levels for preanaphase spindles is higher than at other stages of the cell cycle. Mzt1 overproduction enhances spindle microtubule assembly without affecting γTuRC levels at mitotic SPBs. We propose that Alp16GCP6 and Mzt1 act synergistically for efficient bipolar spindle assembly to ensure faithful chromosome segregation.This work was supported by Cancer Research UK, the Francis Crick Institute, Hiroshima University, and the Japan Society for the Promotion of Science KAKENHI Scientific Research (A) (16H02503) and Challenging Exploratory Research (16K14672) (T.T.)
Role of the Schizosaccharomyces pombe F-box DNA helicase in processing recombination intermediates.
In an effort to identify novel genes involved in recombination repair, we isolated fission yeast Schizosaccharomyces pombe mutants sensitive to methyl methanesulfonate (MMS) and a synthetic lethal with rad2. A gene that complements such mutations was isolated from the S. pombe genomic library, and subsequent analysis identified it as the fbh1 gene encoding the F-box DNA helicase, which is conserved in mammals but not conserved in Saccharomyces cerevisiae. An fbh1 deletion mutant is moderately sensitive to UV, MMS, and ¿ rays. The rhp51 (RAD51 ortholog) mutation is epistatic to fbh1. fbh1 is essential for viability in stationary-phase cells and in the absence of either Srs2 or Rqh1 DNA helicase. In each case, lethality is suppressed by deletion of the recombination gene rhp57. These results suggested that fbh1 acts downstream of rhp51 and rhp57. Following UV irradiation or entry into the stationary phase, nuclear chromosomal domains of the fbh1¿ mutant shrank, and accumulation of some recombination intermediates was suggested by pulsed-field gel electrophoresis. Focus formation of Fbh1 protein was induced by treatment that damages DNA. Thus, the F-box DNA helicase appears to process toxic recombination intermediates, the formation of which is dependent on the function of Rhp51
The Msd1–Wdr8–Pkl1 complex anchors microtubule minus ends to fission yeast spindle pole bodies
The minus ends of spindle microtubules are anchored to a microtubule-organizing center. The conserved Msd1/SSX2IP proteins are localized to the spindle pole body (SPB) and the centrosome in fission yeast and humans, respectively, and play a critical role in microtubule anchoring. In this paper, we show that fission yeast Msd1 forms a ternary complex with another conserved protein, Wdr8, and the minus end–directed Pkl1/kinesin-14. Individual deletion mutants displayed the identical spindle-protrusion phenotypes. Msd1 and Wdr8 were delivered by Pkl1 to mitotic SPBs, where Pkl1 was tethered through Msd1–Wdr8. The spindle-anchoring defect imposed by msd1/wdr8/pkl1 deletions was suppressed by a mutation of the plus end–directed Cut7/kinesin-5, which was shown to be mutual. Intriguingly, Pkl1 motor activity was not required for its anchoring role once targeted to the SPB. Therefore, spindle anchoring through Msd1–Wdr8–Pkl1 is crucial for balancing the Cut7/kinesin-5–mediated outward force at the SPB. Our analysis provides mechanistic insight into the spatiotemporal regulation of two opposing kinesins to ensure mitotic spindle bipolarity.This research was supported by Cancer Research UK (T. Toda)
Precocious activation of APC/C-Cdh1 at pre-anaphase causes genome instability
Faithful chromosome segregation and thereby accurate gene transmission are crucial for all organisms. Until proper attachment of the mitotic spindle to the kinetochore is established, the ubiquitin ligase (E3) Cdc20-activated APC/C (anaphase promoting complex/cyclosome) is repressed by the spindle assembly checkpoint (SAC) and sister chromatin cohesion is protected. Mutants defective in SAC fail to arrest at metaphase even in the presence of damaged microtubules. Interestingly, a similar phenomenon occurs in yeast cells defective in Bub2, a negative factor of the mitotic exit network (MEN), which is required for telophase onset, although its precise molecular mechanism is unknown. Here, we show that chromosome missegregation occurs frequently in bub2∆ cells in the presence of damaged microtubules. The loss of Bub2 caused precocious activation of APC/C-Cdh1/Hct1 at pre-anaphase, leading to securin degradation and then separase-mediated cohesin cleavage. Overexpression of CDH1 and CDC14, encoding Cdc14 phosphatase, at pre-anaphase similarly caused chromosome missegregation. Thus, sequential activation of APC/C-Cdc20 and then APC/C-Cdh1 is critical for precise chromosome segregation and precocious activation of APC/C-Cdh1 at pre-anaphase causes genomic instability. Since degradation of human securin is also mediated by APC/C-Cdc20 and APC/C-Cdh1, this study predicts that precocious activation APC/C-Cdh1 in human cells similarly causes genomic instability, and thereby cell death or tumorigenesis
Two XMAP215/TOG Microtubule Polymerases, Alp14 and Dis1, Play Non-Exchangeable, Distinct Roles in Microtubule Organisation in Fission Yeast
Proper bipolar spindle assembly underlies accurate chromosome segregation. A cohort of microtubule-associated proteins orchestrates spindle microtubule formation in a spatiotemporally coordinated manner. Among them, the conserved XMAP215/TOG family of microtubule polymerase plays a central role in spindle assembly. In fission yeast, two XMAP215/TOGmembers, Alp14 and Dis1, share essential roles in cell viability; however how these two proteins functionally collaborate remains undetermined. Here we show the functional interplay and specification of Alp14 and Dis1. Creation of new mutant alleles of alp14, which display temperature sensitivity in the absence of Dis1, enabled us to conduct detailed analyses of a double mutant. We have found that simultaneous inactivation of Alp14 and Dis1 results in early mitotic arrest with very short, fragile spindles. Intriguingly, these cells often undergo spindle collapse, leading to a lethal “cut” phenotype. By implementing an artificial targeting system, we have shown that Alp14 and Dis1 are not functionally exchangeable and as such are not merely redundant paralogues. Interestingly, while Alp14 promotes microtubule nucleation, Dis1 does not. Our results uncover that the intrinsic specification, not the spatial regulation, between Alp14 and Dis1 underlies the collaborative actions of these two XMAP215/TOG members in mitotic progression, spindle integrity and genome stability.This work was supported by the Japan Society for the Promotion of Science (JSPS) (KAKENHI Scientific Research (A) 16H02503 and the Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (S2902) to T.T. and Scientific Research (C) 19K05813 to M.Y.)
Two spatially distinct kinesin-14 proteins, Pkl1 and Klp2, generate collaborative inward forces against kinesin-5 Cut7 in S. pombe
Kinesin motors play central roles in bipolar spindle assembly. In many eukaryotes, spindle pole separation is driven by kinesin-5, which generates outward force. This outward force is balanced by antagonistic inward force elicited by kinesin-14 and/or dynein. In fission yeast, two kinesin-14 proteins, Pkl1 and Klp2, play an opposing role against the kinesin-5 motor protein Cut7. However, how the two kinesin-14 proteins coordinate individual activities remains elusive. Here, we show that although deletion of either pkl1 or klp2 rescues temperature-sensitive cut7 mutants, deletion of only pkl1 can bypass the lethality caused by cut7 deletion. Pkl1 is tethered to the spindle pole body, whereas Klp2 is localized along the spindle microtubule. Forced targeting of Klp2 to the spindle pole body, however, compensates for Pkl1 functions, indicating that cellular localizations, rather than individual motor specificities, differentiate between the two kinesin-14 proteins. Interestingly, human kinesin-14 (KIFC1 or HSET) can replace either Pkl1 or Klp2. Moreover, overproduction of HSET induces monopolar spindles, reminiscent of the phenotype of Cut7 inactivation. Taken together, this study has uncovered the biological mechanism whereby two different Kinesin- 14 motor proteins exert their antagonistic roles against kinesin-5 in a spatially distinct manner.This work was supported by the Japan Society for the Promotion of Science (JSPS) [KAKENHI Scientific Research (A) 16H02503 to T.T., a Challenging Exploratory Research grant 16K14672 to T.T., Scientific Research (C) 16K07694 to M.Y.], the Naito Foundation (T.T.) and the Uehara Memorial Foundation (T.T)
The hairpin region of Ndc80 is important for the kinetochore recruitment of Mph1/MPS1 in fission yeast
The establishment of proper kinetochore-microtubule attachments facilitates faithful chromosome segregation. Incorrect attachments activate the spindle assembly checkpoint (SAC), which blocks anaphase onset via recruitment of a cohort of SAC components (Mph1/MPS1, Mad1, Mad2, Mad3/BubR1, Bub1 and Bub3) to kinetochores. KNL1, a component of the outer kinetochore KMN network (KNL1/Mis12 complex/Ndc80 complex), acts as a platform for Bub1 and Bub3 localization upon its phosphorylation by Mph1/MPS1. The Ndc80 protein, a major microtubule-binding site, is critical for MPS1 localization to the kinetochores in mammalian cells. Here we characterized the newly isolated mutant ndc80-AK01 in fission yeast, which contains a single point mutation within the hairpin region. This hairpin connects the preceding calponin-homology domain with the coiled-coil region. ndc80-AK01 was hypersensitive to microtubule depolymerizing reagents with no apparent growth defects without drugs. Subsequent analyses indicated that ndc80-AK01 is defective in SAC signaling, as mutant cells proceeded into lethal cell division in the absence of microtubules. Under mitotic arrest conditions, all SAC components (Ark1/Aurora B, Mph1, Bub1, Bub3, Mad3, Mad2 and Mad1) did not localize to the kinetochore. Further genetic analyses indicated that the Ndc80 hairpin region might act as a platform for the kinetochore recruitment of Mph1, which is one of the most upstream SAC components in the hierarchy. Intriguingly, artificial tethering of Mph1 to the kinetochore fully restored checkpoint signaling in ndc80-AK01 cells, further substantiating the notion that Ndc80 is a kinetochore platform for Mph1. The hairpin region of Ndc80, therefore, plays a critical role in kinetochore recruitment of Mph1.This work was supported by by Cancer Research UK—by Cancer Research UK and the Francis Crick Institute
Fission yeast MOZART1/Mzt1 is an essential γ-tubulin complex component required for complex recruitment to the microtubule organizing center, but not its assembly
γ-Tubulin plays a universal role in microtubule nucleation from microtubule organizing centers (MTOCs) such as the animal centrosome and fungal spindle pole body (SPB). γ-Tubulin functions as a multiprotein complex called the γ-tubulin complex (γ-TuC), consisting of GCP1–6 (GCP1 is γ-tubulin). In fungi and flies, it has been shown that GCP1–3 are core components, as they are indispensable for γ-TuC complex assembly and cell division, whereas the other three GCPs are not. Recently a novel conserved component, MOZART1, was identified in humans and plants, but its precise functions remain to be determined. In this paper, we characterize the fission yeast homologue Mzt1, showing that it is essential for cell viability. Mzt1 is present in approximately equal stoichiometry with Alp4/GCP2 and localizes to all the MTOCs, including the SPB and interphase and equatorial MTOCs. Temperature-sensitive mzt1 mutants display varying degrees of compromised microtubule organization, exhibiting multiple defects during both interphase and mitosis. Mzt1 is required for γ-TuC recruitment, but not sufficient to localize to the SPB, which depends on γ-TuC integrity. Intriguingly, the core γ-TuC assembles in the absence of Mzt1. Mzt1 therefore plays a unique role within the γ-TuC components in attachment of this complex to the major MTOC site.This research was supported by Cancer Research UK (T.T.)
A non-canonical function of Plk4 in centriolar satellite integrity and ciliogenesis through PCM1 phosphorylation
Centrioles are the major constituents of the animal centrosome, in which Plk4 kinase serves as a master regulator of the duplication cycle. Many eukaryotes also contain numerous peripheral particles known as centriolar satellites. While centriolar satellites aid centriole assembly and primary cilium formation, it is unknown whether Plk4 plays any regulatory roles in centriolar satellite integrity. Here we show that Plk4 is a critical determinant of centriolar satellite organisation. Plk4 depletion leads to the dispersion of centriolar satellites and perturbed ciliogenesis. Plk4 interacts with the satellite component PCM1, and its kinase activity is required for phosphorylation of the conserved S372. The nonphosphorylatable PCM1 mutant recapitulates phenotypes of Plk4 depletion, while the phosphomimetic mutant partially rescues the dispersed centriolar satellite patterns and ciliogenesis in cells depleted of PCM1. We show that S372 phosphorylation occurs during the G1 phase of the cell cycle and is important for PCM1 dimerisation and interaction with other satellite components. Our findings reveal that Plk4 is required for centriolar satellite function, which may underlie the ciliogenesis defects caused by Plk4 dysfunction
Performance Evaluation of The Speaker-Independent HMM-based Speech Synthesis System "HTS-2007" for the Blizzard Challenge 2007
This paper describes a speaker-independent/adaptive HMM-based speech synthesis system developed for the Blizzard Challenge 2007. The new system, named HTS-2007, employs speaker adaptation (CSMAPLR+MAP), feature-space adaptive training, mixed-gender modeling, and full-covariance modeling using CSMAPLR transforms, in addition to several other techniques that have proved effective in our previous systems. Subjective evaluation results show that the new system generates significantly better quality synthetic speech than that of speaker-dependent approaches with realistic amounts of speech data, and that it bears comparison with speaker-dependent approaches even when large amounts of speech data are available
- …