196 research outputs found

    Inhibition of HSF1 and SAFB Granule Formation Enhances Apoptosis Induced by Heat Stress

    Get PDF
    Stress resistance mechanisms include upregulation of heat shock proteins (HSPs) and formation of granules. Stress-induced granules are classified into stress granules and nuclear stress bodies (nSBs). The present study examined the involvement of nSB formation in thermal resistance. We used chemical compounds that inhibit heat shock transcription factor 1 (HSF1) and scaffold attachment factor B (SAFB) granule formation and determined their effect on granule formation and HSP expression in HeLa cells. We found that formation of HSF1 and SAFB granules was inhibited by 2,5-hexanediol. We also found that suppression of HSF1 and SAFB granule formation enhanced heat stress-induced apoptosis. In addition, the upregulation of HSP27 and HSP70 during heat stress recovery was suppressed by 2,5-hexanediol. Our results suggested that the formation of HSF1 and SAFB granules was likely to be involved in the upregulation of HSP27 and HSP70 during heat stress recovery. Thus, the formation of HSF1 and SAFB granules was involved in thermal resistance

    Multiple incorporation of non-natural amino acids into a single protein using tRNAs with non-standard structures

    Get PDF
    AbstractThe ability to introduce non-natural amino acids into proteins opens up new vistas for the study of protein structure and function. This approach requires suppressor tRNAs that deliver the non-natural amino acid to a ribosome associated with an mRNA containing an expanded codon. The suppressor tRNAs must be absolutely protected from aminoacylation by any of the aminoacyl-tRNA synthetases in the protein synthesizing system, or a natural amino acid will be incorporated instead of the non-natural amino acid. Here, we found that some tRNAs with non-standard structures could work as efficient four-base suppressors fulfilling the above orthogonal conditions. Using these tRNAs, we successfully demonstrated incorporation of three different non-natural amino acids into a single protein

    Genome-wide search for strabismus susceptibility loci.

    Get PDF
    The purpose of this study was to search for chromosomal susceptibility loci for comitant strabismus. Genomic DNA was isolated from 10mL blood taken from each member of 30 nuclear families in which 2 or more siblings are affected by either esotropia or exotropia. A genome-wide search was performed with amplification by polymerase chain reaction of 400 markers in microsatellite regions with approximately 10 cM resolution. For each locus, non-parametric affected sib-pair analysis and non-parametric linkage analysis for multiple pedigrees (Genehunter software, http://linkage.rockefeller.edu/soft/) were used to calculate multipoint lod scores and non-parametric linkage (NPL) scores, respectively. In sib-pair analysis, lod scores showed basically flat lines with several peaks of 0.25 on all chromosomes. In non-parametric linkage analysis for multiple pedigrees, NPL scores showed one peak as high as 1.34 on chromosomes 1, 2, 4, 7, 10, 15, and 16, while 2 such peaks were found on chromosomes 3, 9, 11, 12, 18, and 20. Non-parametric linkage analysis for multiple pedigrees of 30 families with comitant strabismus suggested a number of chromosomal susceptibility loci. Our ongoing study involving a larger number of families will refine the accuracy of statistical analysis to pinpoint susceptibility loci for comitant strabismus.&#60;/P&#62;</p

    Photoinduced Endosomal Escape Mechanism: A View from Photochemical Internalization Mediated by CPP-Photosensitizer Conjugates

    Get PDF
    Endosomal escape in cell-penetrating peptide (CPP)-based drug/macromolecule delivery systems is frequently insufficient. The CPP-fused molecules tend to remain trapped inside endosomes and end up being degraded rather than delivered into the cytosol. One of the methods for endosomal escape of CPP-fused molecules is photochemical internalization (PCI), which is based on the use of light and a photosensitizer and relies on photoinduced endosomal membrane destabilization to release the cargo molecule. Currently, it remains unclear how this delivery strategy behaves after photostimulation. Recent findings, including our studies using CPP-cargo-photosensitizer conjugates, have shed light on the photoinduced endosomal escape mechanism. In this review, we discuss the structural design of CPP-photosensitizer and CPP-cargo-photosensitizer conjugates, and the PCI mechanism underlying their application

    Clinical correlations of aggrecan in the resected medial rectus muscle of patients with intermittent exotropia.

    Get PDF
    The purpose of this study was to elucidate the role of extracellular matrix components such as aggrecan, fibronectin, and laminin in the extraocular muscle of patients with strabismus. Resected tissues of the medial rectus muscle of 47 patients with intermittent exotropia obtained during recession-resection surgery were frozen under liquid nitrogen and pulverized by a Freezer/Mill to solubilize the tissue for enzyme immunoassay. The total amounts of aggrecan, fibronectin, and laminin in the resected tissue were correlated with clinical data of patients such as age, exodeviation, and refractive error. The amount of aggrecan decreased significantly with the advance of age (P &#60; 0.0001, Spearman rank correlation test), while the amount of laminin or fibronectin had no correlation with age. Patients with basic type intermittent exotropia showed larger, although not significantly, amounts of aggrecan than those with convergence insufficiency type (P = 0.0538, Mann-Whitney U-test). The amount of aggrecan may be related to motor aspects of intermittent exotropia.</p

    Photocontrolled apoptosis induction using precursor miR-664a and an RNA carrier-conjugated with photosensitizer

    Get PDF
    Methods to spatially induce apoptosis are useful for cancer therapy. To control the induction of apoptosis, methods using light, such as photochemical internalization (PCI), have been developed. We hypothesized that photoinduced delivery of microRNAs (miRNAs) that regulate apoptosis could spatially induce apoptosis. In this study, we identified pre-miR-664a as a novel apoptosis-inducing miRNA via mitochondrial apoptotic pathway. Further, we demonstrated the utility of photoinduced cytosolic dispersion of RNA (PCDR), which is an intracellular RNA delivery method based on PCI. Indeed, apoptosis is spatially regulated by pre-miR-664a and PCDR. In addition, we found that apoptosis induced by pre-miR-664a delivered by PCDR was more rapid than that by lipofection. These results suggest that pre-miR-664a is a nucleic acid drug candidate for cancer therapy and PCDR and pre-miR-664a-based strategies have potential therapeutic uses for diseases affecting various cell types

    Cell cycle dependence of apoptosis photo-triggered using peptide-photosensitizer conjugate

    Get PDF
    Investigation of the relevance between cell cycle status and the bioactivity of exogenously delivered biomacromolecules is hindered by their time-consuming cell internalization and the cytotoxicity of transfection methods. In this study, we addressed these problems by utilizing the photochemical internalization (PCI) method using a peptide/protein-photosensitizer conjugate, which enables immediate cytoplasmic internalization of the bioactive peptides/proteins in a light-dependent manner with low cytotoxicity. To identify the cell-cycle dependent apoptosis, a TatBim peptide-photosensitizer conjugate (TatBim-PS) with apoptotic activity was photo-dependently internalized into HeLa cells expressing a fluorescent ubiquitination-based cell cycle indicator (Fucci2). Upon irradiation, cytoplasmic TatBim-PS internalization exceeded 95% for all cells classified in the G(1), S, and G(2)/M cell cycle phases with no significant differences between groups. TatBim-PS-mediated apoptosis was more efficiently triggered by photoirradiation in the G(1)/S transition than in the G(1) and S/G(2)/M phases, suggesting high sensitivity of the former phase to Bim-induced apoptosis. Thus, the cell cycle dependence of Bim peptide-induced apoptosis was successfully investigated using Fucci2 indicator and the PCI method. Since PCI-mediated cytoplasmic internalization of peptides is rapid and does not span multiple cell cycle phases, the Fucci-PCI method constitutes a promising tool for analyzing the cell cycle dependence of peptides/protein functions

    Alternative Leader-Exon Usage in Mouse IGF-I mRNA Variants: Class 1 and Class 2 IGF-I mRNAs

    Get PDF
    The mouse IGF-I gene contains six exons, and exon 1 and exon 2 gene are considered to be leader exons. The regulatory mechanism of alternative usage of the leader exons is unclear in mice. The present study, was aimed at clarifying changes in class 1 (derived from exon 1) and class 2 (derived from exon 2) IGF-I mRNA expression in mice under various conditions. Both class 1 and class 2 IGF-I mRNAs were expressed in the mouse uterus, liver and kidney, and class 1 IGF-I mRNA was the major transcript in all organs studied. In the uterus, both class 1 and class 2 IGF-I mRNA expression changed markedly during the estrous cycle, with the highest level at proestrus, but in the liver and kidney there were no significant changes in IGF-I mRNA expression during the estrous cycle. Estrogen treatment increased both class 1 and class 2 IGF-I mRNA levels in the uterus of ovariectomized mice, but class 1 mRNA expression increased more in response to estrogen treatment than class 2 mRNA expression. These findings suggest that estrogen stimulates IGF-I gene expression in, uterine cells, and that a promoter involved in transcription of class 1 IGF-I mRNA is more responsive to estrogen. In conclusion, the present study revealed that two leader exons of mouse IGF-I gene are used in the uterus, liver and kidney. IGF-I mRNA levels of both classes changed during the estrous cycle in the uterus, but not in the liver or kidney. Estrogen increased IGF-I mRNA levels of both classes in the uterus

    FRET probe for detecting two mutations in one EGFR mRNA

    Get PDF
    Technologies for visualizing and tracking RNA are essential in molecular biology, including in disease-related fields. In this study, we propose a novel probe set (DAt-probe and T-probe) that simultaneously detects two mutations in the same RNA using fluorescence resonance energy transfer (FRET). The DAt-probe carrying the fluorophore Atto488 and the quencher Dabcyl were used to detect a cancer mutation (exon19del), and the T-probe carrying the fluorophore Tamra was used to detect drug resistance mutations (T790M) in epidermal growth factor receptor (EGFR) mRNA. These probes were designed to induce FRET when both mutations were present in the mRNA. Gel electrophoresis confirmed that the two probes could efficiently bind to the mutant mRNA. We measured the FRET ratios using wild-type and double-mutant RNAs and found a significant difference between them. Even in living cells, the FRET probe could visualize mutant RNA. As a result, we conclude that this probe set provides a method for detecting two mutations in the single EGFR mRNA via FRET
    • …
    corecore