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Abstract The ability to introduce non-natural amino acids into
proteins opens up new vistas for the study of protein structure
and function. This approach requires suppressor tRNAs that de-
liver the non-natural amino acid to a ribosome associated with an
mRNA containing an expanded codon. The suppressor tRNAs
must be absolutely protected from aminoacylation by any of
the aminoacyl-tRNA synthetases in the protein synthesizing sys-
tem, or a natural amino acid will be incorporated instead of the
non-natural amino acid. Here, we found that some tRNAs with
non-standard structures could work as efficient four-base sup-
pressors fulfilling the above orthogonal conditions. Using these
tRNAs, we successfully demonstrated incorporation of three dif-
ferent non-natural amino acids into a single protein.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Non-natural amino acids can be incorporated into proteins

by the delivery of an aminoacylated suppressor tRNA to a

ribosome that is associated with a mRNA containing an ex-

panded codon/anticodon pair (reviewed in [1–4]). In Esche-

richia coli translation systems, several four-base codon/

anticodon pairs have been used to incorporate non-natural

amino acids [1] and some have been used to introduce multiple

kinds of non-natural amino acids [5]. Only a few four-base

suppressor tRNAs which are totally protected from aminoacy-

lation by endogenous aminoacyl-tRNA synthetase (ARS) have

been reported [6–8]. To expand the availability of the four-base

codon strategy, more suppressor tRNAs having different back-

bone sequences and different four-base anticodons need to be

devised.

Since tRNAs of non-standard structures seem to easily es-

cape recognition by E. coli ARSs in comparison with tRNAs

of standard cloverleaf structures and their mutants, we
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screened for efficient four-base suppressor tRNAs from vari-

ous non-standard tRNAs, specifically to determine if such

non-standard tRNAs can evade recognition by E. coli ARSs

and act as efficient carriers of non-natural amino acids.

Almost all tRNAs in the prokaryotic and eukaryotic cyto-

plasm have well-conserved cloverleaf secondary structures

bearing a 7-bp acceptor stem, a 5-bp anticodon stem, a 5-bp

T stem, and a 4-bp D stem. However, some exceptions have

been found [9], primarily in animal mitochondria. For exam-

ple, bovine mitochondrial (mt) tRNASer
GCU lacks the entire D

stem [10], most nematode mt tRNAs lack the entire T stem

[11], and the bovine mt tRNASer
UGA has a long anticodon stem

and short connector regions between the acceptor and D stems

and the anticodon and T stems [10]. A few exceptional second-

ary structures have been found in cytoplasmic tRNA species,

such as eukaryotic tRNA[Ser]Sec, which bears a 9-bp acceptor

stem, a 4-bp T stem and a 6-bp D stem [12], and Methanosar-

cina barkeri tRNAPyl [13], which has the same structural fea-

tures as bovine mt tRNASer
UGA. These non-standard tRNAs

seem to be a good starting point to develop four-base suppres-

sor tRNAs as carriers of non-natural amino acids.
2. Materials and methods

2.1. Preparation of tRNAs possessing a four-base anticodon
To generate DNA templates for transcription, primer extension was

performed using two primers (1 lM each) in a 100-lL reaction mixture
containing 0.2 mM dNTPs, 25 units KOD Dash DNA polymerase
(Toyobo, Japan), and 10 lL of 10· Buffer #1, with the following tem-
perature program: 94 �C for 60 s, and 3 cycles of 94 �C for 30 s, 55 �C
for 2 s, and 72 �C for 30 s. The primers were designed to complement
each other at each 3 0 region (about 20 nucleotides). The resultant dou-
ble-stranded DNA was collected by precipitation with 2-propanol. The
transcription reaction was performed at 37 �C for 4 h in a reaction
mixture that contained 40 mM Tris–HCl (pH 8.0), 24 mM MgCl2,
5 mM DTT, 2 mM spermidine, 0.01% Triton X-100, 10 mM GMP,
2 mM ATP, 2 mM GTP, 2 mM CTP, 2 mM UTP, 1.8 units/mL pyro-
phosphatase (Sigma), 750 units/mL T7 RNA polymerase (Takara),
and 200 nM DNA template. The tRNA transcripts were purified in
a 10% denaturing polyacrylamide gel. Non-natural amino acid
(Xaa)-tRNAs were prepared by ligating transcribed tRNA without
the 3 0-CA sequence and the aminoacyl dinucleotide (pdCpA) with
T4 RNA ligase as described [14,15].

2.2. In vitro translation and Western blot analysis
Mutated streptavidin mRNAs with four-base codons were prepared

as described [16]. A T7-tag sequence was also encoded at the N-termi-
nus of this streptavidin mRNA so that the protein could be detected
with an anti-T7 antibody. In vitro translation and Western blot anal-
ysis were performed as described [16]. Briefly, an in vitro translation
mixture (10 lL) containing 2 lL E. coli S30 Extract for Linear Tem-
plates (Promega), 55 mM HEPES–KOH (pH 7.5), 210 mM potassium
blished by Elsevier B.V. All rights reserved.
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glutamate, 6.9 mM ammonium acetate, 1.7 mM dithiothreitol, 1.2 mM
ATP, 0.28 mMGTP, 26 mM phosphoenolpyruvate, 1 mM spermidine,
1.9% polyethyleneglycol-8000, 35 lg/mL folinic acid, 12 mM magne-
sium acetate, 0.1 mM of each amino acid, 8 lg mRNA, and 0.1 nmol
aminoacyl-tRNA was incubated at 37 �C for 1 h. The reaction mixture
was separated using a 15% SDS–polyacrylamide gel. Proteins were
transferred to a PVDF membrane (Bio-Rad) and Western blotted
using an anti-T7-tag monoclonal antibody (Novagen) and the Proto-
Blot II AP system (Promega). The efficiency of the four-base decoding
was estimated by comparing the band intensity of the full-length prod-
uct with those of serial dilutions of wild-type streptavidin expressed
in vitro. The band intensity was evaluated using ImageJ Ver.1.34s (Na-
tional Institutes of Health, USA, http://rsb.info.nih.gov/ij/). The effi-
ciency was measured at least three times and is expressed as
mean ± S.D.
3. Results and discussion

The sequences and secondary structures of these non-stan-

dard tRNA candidates for four-base suppressors are shown

in Fig. 1. As the first generation of suppressor tRNAs, we syn-

thesized non-standard tRNACCCGs in which only the antico-

dons were mutated to a CCCG anticodon. The main bodies

of the tRNAs were taken from mouse tRNASec [12], Methano-

sarcina acetivorans tRNAPyl [17], humanmt tRNALeu
UAA [18], and

bovine mt tRNAPhe, tRNASer
UGA, and tRNASer

GCU [10]. Mouse

tRNASec and M. acetivorans tRNAPyl are tRNAs for the natu-
Fig. 1. Sequences and secondary structures of suppressor tRNAs bearing C
Characteristic secondary structures are shown by red boxes and letters and
indicate mutations introduced to replace mismatch pairs by cognate ones in
ral 21st selenocysteine (Sec) and 22nd pyrrolysine (Pyl) amino

acids. For second generation suppressor tRNAs, the main

bodies were mutated to replace mismatch pairs with cognate

ones in the stem structures of mouse tRNASec
CCCG, human mt

tRNALeu
ðUAAÞCCCG, bovine mt tRNAPhe

CCCG and tRNASer
ðUGAÞCCCG,

because the mismatches seemed to cause low suppression effi-

ciency observed in the first generation tRNAs. The mutated

positions are indicated by arrows in Fig. 1.

The tRNACCCG�s designed and synthesized above were first

examined to determine if they are protected from aminoacyla-

tion by endogeneous ARSs. Various deacyl-tRNACCCGs were

added to an E. coli translation system for expressing streptavi-

din from an mRNA having a CGGG codon at the 83rd posi-

tion of streptavidin (Fig. 2A). The yields of full-length

streptavidin was used as the measure of suppression efficiency

(Fig. 2B). If deacyl-tRNACCCGs are totally protected from

endogenous ARSs, no decoding of the CGGG codon will take

place, resulting in the absence of full-length protein. Fig. 2B

shows that none of the non-standard tRNAs examined in this

study produced full-length streptavidin, only truncated pro-

teins were formed. These results indicate either that these

tRNAs are absolutely protected from endogenous ARSs or

they are totally ignored in the E. coli translation system. In

these experiments, yeast tRNAPhe
CCCG was used as a control. A

small amount of full-length streptavidin was produced in the
CCG anticodons. Parentheses show the original anticodon sequences.
unique short connector regions are shown by orange boxes. Arrows
the stem regions.

http://rsb.info.nih.gov/ij/


Fig. 2. Four-base suppression experiment using various tRNAsCCCG. (A) The mRNA sequence of a mutated streptavidin and its associated amino
acids (positions 83–85). When the CGGG four-base codon is translated with an aminoacyl-tRNACCCG, the correct reading frame is maintained.
When the CGGG sequence is decoded as a CGG triplet by an endogenous arginyl-tRNA, the translation will be stopped at the UAA codon. (B, C)
Western blot analysis of translation products using suppressor tRNACCCGs derived from yeast tRNAPhe (yPhe); mouse tRNASec (mSec); M.
acetivorans tRNAPyl (MPyl); human mt tRNALeu

UAA (mtLeu); bovine mt tRNAPhe (mtPhe), tRNASer
GCU (mtGCU), and tRNASer

UGA (mtUGA); and four
mutants with mismatches removed (mu mSec, mu mtLeu, mu mtPhe, and mu mtUGA). Translation using suppressor tRNACCCGs was performed
using the mutant streptavidin mRNA with the CGGG codon shown in (A). Wild-type streptavidin was also translated in vitro using wild-type
mRNA (wt), which is identical to the mutant mRNA except for the 83rd codon. Western blotting analysis was performed as described in Section 2.
(B) Translation using deacyl-tRNACCCGs. (C) Translation using ntrPhe-tRNACCCGs.
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presence of this control tRNA, indicating that the tRNA was

recognized by some endogenous ARSs. The aminoacyl-tRNA

prepared by the chemical aminoacylation method [14,15] bears

75dC which prevents most undesired aminoacylation [15].

However, tRNAs with no deoxynucleosides are preferred

when other aminoacylation methods are employed. The unde-

sired aminoacylation of yeast tRNAPhe
CCCG took place primarily

by arginyl-tRNA synthetase [19]. The inertness of the non-

standard tRNAs in Fig. 2B, whether this indicates full

protection from ARSs or that they are ignored by the transla-

tion system machinery, makes them a good starting point for

finding efficient and orthogonal tRNAs as carriers of non-

natural amino acids.

A streptavidin mRNA having a 83CGGG codon was trans-

lated in vitro with various tRNACCCGs chemically aminoacy-

lated with p-nitrophenylalanine [14,15]. The translation

products were analyzed by Western blotting (Fig. 2C). The effi-

ciency of CGGG suppression by each tRNACCCG was deter-

mined by comparing the band intensity of the full-length

streptavidin to the wild-type streptavidin expressed in vitro
(Table 1). Most of the non-standard tRNAs showed no sup-

pression efficiency even when chemically aminoacylated, indi-

cating that they are totally ignored in the E. coli system. But,

M. acetivorans tRNAPyl
CCCG showed high suppression efficiency

(about 70% compared to wild-type streptavidin). Mouse

tRNASec
CCCG showed less efficient but definite suppression. Be-

cause they are protected from ARSs, these tRNAs can be used

as four-base suppressor tRNAs to incorporate non-natural

amino acids in the E. coli translation system. Some tRNAs

with mismatches in their stem regions became efficient suppres-

sors when the mismatches were removed (Fig. 1). For example,

the mouse tRNASec
CCCG mutant showed 15% suppression,

slightly higher efficiency than the original sequence. More sur-

prisingly, very high suppression efficiency was observed in the

mismatch-removed bovine mt tRNASer
ðUGAÞCCCG mutant (80%),

although no detectable suppression was observed in the origi-

nal sequence.

Bovine mt tRNASer
UGA has a long anticodon stem which is

structurally compensated by its short connector regions to

generate a tertiary structure similar to standard tRNAs



Fig. 3. Incorporation of three non-natural amino acids into a single
protein using efficient four-base suppressor tRNAs. (A) A schematic
representation of the mRNA of a streptavidin mutated at three
positions (Xaa3 mRNA). Three aminoacyl-tRNAs bearing CCCU,
AGAG and ACCC anticodons are depicted at the corresponding
codon positions. Hatched and gradated circles illustrate non-natural
amino acids (Xaa1, Xaa2 and Xaa3). (B, C) Western blot analysis of
translation products using three four-base suppressor tRNAs charged
with non-natural amino acids. M. acetivorans tRNAPyl

CCCG, mutated
E. coli tRNAAsn

AGAG, and mutated bovine mt tRNASer
ðUGAÞACCC were used

in these experiment. Wild-type streptavidin was also translated in vitro
using wild-type mRNA (wt), which is identical to the mutant mRNA
except for the 54th, 83rd and 120th codons. Western blotting analysis
was performed as described in Section 2. Twice as much Xaa3-mRNA
translation mixture was loaded on the gel as the wild-type reaction
mixture. [-aa] means the use of the deacyl-tRNAs. Truncated 1, 2 and 3
indicate the translation products truncated at the 54th, 83rd and 120th
positions of streptavidin, respectively. (B) Translation using acdAla-
tRNACCCG, ntrPhe-tRNAAGAG, and 2antAla-tRNAACCC. (C) Trans-
lation using 2antAla-tRNACCCG, ntrPhe-tRNAAGAG, and 2napAla-
tRNAACCC. (D) Chemical structures of non-natural amino acids used
in this study.

Table 1
Efficiency of CGGG codon suppression using deacyl-tRNA or
nitrophenylalanyl-tRNA (%)

deacyl-tRNACCCG ntrPhe-tRNACCCG

Yeast tRNAPhe 20 (±10) 70 (±10)
mouse tRNASec NDa 11 (±5)
M. acetivorans tRNAPyl ND 68 (±7)
Human mt tRNALeu ND ND
Bovine mt tRNAPhe ND ND
Bovine mt tRNASer

UGA ND ND
Bovine mt tRNASer

GCU ND ND
Mouse tRNASec mutant ND 15 (±1)
Human mt tRNALeu mutant ND ND
Bovine mt tRNAPhe mutant ND ND
Bovine mt tRNASer

UGA mutant ND 80 (±15)

The efficiency was defined as the relative yield of full-length mutant
product to the wild-type streptavidin expressed in vitro. The data were
obtained from at least three measurements.
aND; not detected (<3%).
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[20,21]. M. acetivorans tRNAPyl has the same secondary struc-

ture as bovine mt tRNASer
UGA. The above experimental results

suggest that tRNAs with this secondary structure work effi-

ciently in the E. coli translation system. Successful four-base

decoding with mouse tRNASec
CCCG is somewhat surprising, be-

cause E. coli aminoacyl-tRNASec cannot interact efficiently

with the E. coli elongation factor Tu (EF-Tu) [22]. The mouse

tRNA may work in this system because mouse tRNASec does

not have an antideterminant for prokaryotic EF-Tu (C7-G66,

G49-U65, and C50-G64) [23]. A T stem that is 1 bp shorter

than normal seems to be allowed in the E. coli system, as dem-

onstrated by suppression of the CGGG codon by mouse

tRNASec
CCCG. However, in this tRNASec, the shorter T stem

may be compensated by a longer acceptor stem, which forms

a consecutive co-axial helix with the T stem.

The three four-base suppressor tRNAs that specifically de-

coded the CGGG codon, i.e., M. acetivorans tRNAPyl
CCCG, mis-

match-removed mutants of mouse tRNASec
CCCG and bovine mt

tRNASer
ðUGAÞCCCG, were discovered in the above experiment. The

tRNA
Pyl
CCCG and themutated tRNASer

ðUGAÞCCCG were quite efficient.

To demonstrate the availability of these two tRNAs, the same

tRNAs bearing other four-base anticodons,AGAGandACCC,

were synthesized and decoding efficiencies of these tRNAs were

evaluated. The tRNAsAGAG and tRNAsACCC were again com-

pletely protected from endogenous ARSs. Supplementary

Fig. 1 shows that LL-p-nitrophenylalanine (ntrPhe)-incorpora-

tion efficiencies of these tRNAs were 43–90%, consistent with

previously reported four-base suppressor tRNAs [6,8]. Supple-

mentary Fig. 1 indicates that each tRNA probably has prefer-

ences in codon/anticodon sequence and codon position (i.e.,

neighboring sequence of the codon in anmRNA). For example,

the tRNA
Pyl
CCCG was the most efficient in suppressing the

54CGGG codon, but the tRNASer
ðUGAÞACCC was the most efficient

in suppressing 120GGGU. Thus, incorporation of multiple

non-natural amino acids into a protein requires multiple kinds

of optimal suppressor tRNAs to their respective codons.

As a demonstration of the high efficiency of the present

tRNAs, we incorporated three different non-natural amino

acids into a single protein using M. acetivorans tRNA
Pyl
CCCG,

mutated bovine mt tRNASer
ðUGAÞACCC, and the mutated E. coli

tRNAAsn
AGAG originally reported by Murakami et al. [8]

(Fig. 3). The streptavidin mRNA used in this experiment in-
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cludes three four-base codons; 54CGGG, 83CUCU and
120GGGU (Fig. 3A). When these quadruplet codons are trans-

lated as triplet codons, a stop codon appears at each position

(Supplementary Fig. 2). Translation stopped at these positions

when a deacyl-tRNA was added instead of the aminoacyl-

tRNA (Fig. 3B and C), indicating that no readthrough oc-

curred with deacyl-tRNAs. Full-length mutant streptavidin

including LL-2-acridonylalanine (acdAla) at the 54th, ntrPhe

at the 83th, and LL-2-anthrylalanine (2antAla) at the 120th po-

sition (Fig. 3B), and a mutant including 2antAla at the 54th,

ntrPhe at the 83th, and LL-2-naphthylalanine (2napAla) at the

120th position (Fig. 3C) were successfully synthesized by this

system. The incorporation of the three non-natural amino

acids was confirmed by TOF-mass spectroscopy (Supplemen-

tary Fig. 3).

By adding efficient four-base suppressor tRNAs to the

four-base decoding system, we can incorporate multiple

non-natural amino acids into a single protein without misin-

corporation of any natural amino acid. In this study, incorpo-

ration of three different non-natural amino acids into a

protein was demonstrated for the first time. Multiple incorpo-

ration of non-natural amino acids will expand the scope of

the non-natural mutagenesis from a simple technique for fluo-

rescence labeling, to the fabrication of complex protein sys-

tems where a variety of chemical functions are built in, for

example, a protein including one functional probe, and two

fluorescent probes that undergo FRET. The four-base sup-

pressor tRNAs found in this work will be applicable for

in vivo purposes as well, by importing suppressor tRNAs

aminoacylated in vitro into a living cell [24,25], or by using

an artificial ARS created from natural ARSs [6,7,26] or

non-protein artificial ARSs (aminoacyl-peptide nucleic acid

[27] or the ribozyme [28]).
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Supplementary data associated with this article can be found,
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