49 research outputs found

    Significance of High-frequency Electrical Brain Activity

    Get PDF
     Electroencephalogram (EEG) data include broadband electrical brain activity ranging from infra-slow bands (200 / 250 Hz, respectively) are particularly of note due to their very close relationship to epileptogenicity, with the possibility that they could function as a surrogate biomarker of epileptogenicity. In contrast, physiological high-frequency activity plays an important role in higher brain functions, and the differentiation between pathological / epileptic and physiological HFOs is a critical issue, especially in epilepsy surgery. HFOs were initially recorded with intracranial electrodes in patients with intractable epilepsy as part of a long-term invasive seizure monitoring study. However, fast oscillations (FOs) in the ripple and gamma bands (40-80 Hz) are now noninvasively detected by scalp EEG and magnetoencephalography, and thus the scope of studies on HFOs /FOs is rapidly expanding

    Successful Treatment of Epilepsy by Resection of Periventricular Nodular Heterotopia

    Get PDF
    We report on a case of successful surgical treatment of drug-resistant epilepsy associated with a solitary lesion of periventricular nodular heterotopia (PNH). In the reported patient, intracranial ictal electroencephalography disclosed that seizures did not originate from the heterotopic nodules. However, the seizures were completely suppressed by lesionectomy of PNH alone. Epileptogenesis associated with PNH likely involves a very complex network between PNH and the surrounding cortex, and the disruption of this network may be an effective means of curing intractable, PNH-associated epilepsy

    Neuroprotective effects of edaravone-administration on 6-OHDA-treated dopaminergic neurons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parkinson's disease (PD) is a neurological disorder characterized by the degeneration of nigrostriatal dopaminergic systems. Free radicals induced by oxidative stress are involved in the mechanisms of cell death in PD. This study clarifies the neuroprotective effects of edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one), which has already been used for the treatment of cerebral ischemia in Japan, on TH-positive dopaminergic neurons using PD model both <it>in vitro </it>and <it>in vivo</it>. 6-hydroxydopamine (6-OHDA), a neurotoxin for dopaminergic neurons, was added to cultured dopaminergic neurons derived from murine embryonal ventral mesencephalon with subsequet administration of edaravone or saline. The number of surviving TH-positive neurons and the degree of cell damage induced by free radicals were analyzed. In parallel, edaravone or saline was intravenously administered for PD model of rats receiving intrastriatal 6-OHDA lesion with subsequent behavioral and histological analyses.</p> <p>Results</p> <p><it>In vitro </it>study showed that edaravone significantly ameliorated the survival of TH-positive neurons in a dose-responsive manner. The number of apoptotic cells and HEt-positive cells significantly decreased, thus indicating that the neuroprotective effects of edaravone might be mediated by anti-apoptotic effects through the suppression of free radicals by edaravone. <it>In vivo </it>study demonstrated that edaravone-administration at 30 minutes after 6-OHDA lesion reduced the number of amphetamine-induced rotations significantly than edaravone-administration at 24 hours. Tyrosine hydroxylase (TH) staining of the striatum and substantia nigra pars compacta revealed that edaravone might exert neuroprotective effects on nigrostriatal dopaminergic systems. The neuroprotective effects were prominent when edaravone was administered early and in high concentration. TUNEL, HEt and Iba-1 staining <it>in vivo </it>might demonstrate the involvement of anti-apoptotic, anti-oxidative and anti-inflammatory effects of edaravone-administration.</p> <p>Conclusion</p> <p>Edaravone exerts neuroprotective effects on PD model both <it>in vitro and in vivo</it>. The underlying mechanisms might be involved in the anti-apoptotic effects, anti-oxidative effects, and/or anti-inflammatory effects of edaravone. Edaravone might be a hopeful therapeutic option for PD, although the high therapeutic dosage remains to be solved for the clinical application.</p

    Effect of Boron Addition on the Thermal Properties of Diamond-Particle-Dispersed Cu-Matrix Composites Fabricated by SPS

    Get PDF
    Abstract Diamond particle dispersed copper (Cu) matrix composites were fabricated from the powder mixture composed of diamond, pure-Cu and boron (B) by spark plasma sintering (SPS). The composites were consolidated at 1173 K for 600 s by SPS. The reaction between the diamond particle and the Cu matrix in the composite was not confirmed by SEM observation and X-ray diffraction (XRD) analysis. The relative packing density of the Cu/diamond composites increased with B addition and attained 93.2% -95.8% at the B content range between 1.8 vol.% and 13.8 vol.%. The thermal conductivity of the diamond-dispersed Cu composite drastically increased with B addition and reached the maximum value of 689 W/mK at 7.2 vol% B. Numerous transgranular fractures of diamond particles were observed on bending fracture surfaces of Cu-B/diamond composites. This indicates strong bonding between the diamond particle and the Cu matrix in the composite. The coefficient of thermal expansion of the composite falls in the upper line of Kerner&apos;s model

    Cognitive functions in Parkinson's disease: Relation to disease severity and hallucination

    Get PDF
    Objective: We wished to relate severity of Parkinson's disease (PD) with cognitive function in relation to cerebral blood flow (CBF). Methods: Eighty-one consecutive PD patients were enrolled in this study. We used Mini-Mental State Examination (MMSE) and Wechsler Adult Intelligence Scale-Third edition (WAIS-III) to evaluate cognitive functions, and three-dimensional stereotactic ROI template (3DSRT) and Statistical Parametric Mapping (SPM) 8 to evaluate single photon emission CT (SPECT) recordings of regional CBF. Results: The mean MMSE score of PD patients was 27.4 +/- 2.4. The scores of most patients were higher than 23/30. On the other hand, the mean Full-scale IQ of PD patients was 88.4 +/- 17.3 in WAIS-III, which was lower than that of normal controls. In particular, visuospatial function score of most patients was lower. There was significant correlation between cognitive scores and Hoehn & Yahr stage and hallucinatory episodes. PD Patients with stage III and IV showed significant deterioration in cognitive functions compared to stage II patients. Analysis of CBF revealed relative reductions in perfusion in the cerebral cortex relative to that in normal control. SPM 8 showed that cognitive functions in PD patients were positively correlated with rCBF in the thalamus and cingulate gyrus. Conclusions: This is the study to demonstrate the cognitive impairments in PD patients using WAIS-III. Visuospatial dysfunction might be caused by decrease in rCBF in the parietal and occipital lobes and dorsolateral prefrontal cortex. The severity of cognitive impairments in PD patients was correlated with disease severity and hallucinatory episodes

    Vagus Nerve Stimulation with Mild Stimulation Intensity Exerts Anti-Inflammatory and Neuroprotective Effects in Parkinson's Disease Model Rats

    Get PDF
    Background: The major surgical treatment for Parkinson's disease (PD) is deep brain stimulation (DBS), but a less invasive treatment is desired. Vagus nerve stimulation (VNS) is a relatively safe treatment without cerebral invasiveness. In this study, we developed a wireless controllable electrical stimulator to examine the efficacy of VNS on PD model rats. Methods: Adult female Sprague-Dawley rats underwent placement of a cuff-type electrode and stimulator on the vagus nerve. Following which, 6-hydroxydopamine (6-OHDA) was administered into the left striatum to prepare a PD model. VNS was started immediately after 6-OHDA administration and continued for 14 days. We evaluated the therapeutic effects of VNS with behavioral and immunohistochemical outcome assays under different stimulation intensity (0.1, 0.25, 0.5 and 1 mA). Results: VNS with 0.25-0.5 mA intensity remarkably improved behavioral impairment, preserved dopamine neurons, reduced inflammatory glial cells, and increased noradrenergic neurons. On the other hand, VNS with 0.1 mA and 1 mA intensity did not display significant therapeutic efficacy. Conclusions: VNS with 0.25-0.5 mA intensity has anti-inflammatory and neuroprotective effects on PD model rats induced by 6-OHDA administration. In addition, we were able to confirm the practicality and effectiveness of the new experimental device

    The neuroprotective and neurorescue effects of carbamylated erythropoietin Fc fusion protein (CEPO-Fc) in a rat model of Parkinson's disease

    Get PDF
    Parkinson's disease is characterized by progressive degeneration of dopaminergic neurons. Thus the development of therapeutic neuroprotection and neurorescue strategies to mitigate disease progression is important. In this study we evaluated the neuroprotective/rescue effects of erythropoietin Fc fusion protein (EPO-Fc) and carbamylated erythropoietin Fe fusion protein (CEPO-Fc) in a rat model of Parkinson's disease. Adult female Sprague-Dawley rats received intraperitoneal injection of EPO-Fc, CEPO-Fc or PBS. Behavioral evaluations consisted of rota-rod, cylinder and amphetamine-induced rotation tests. In the neuroprotection experiment, the CEPO-Fc group demonstrated significant improvement compared with the EPO-Fc group on the amphetamine-induced rotation test throughout the four-week follow-up period. Histologically, significantly more tyrosine hydroxylase (TH)-positive neurons were recognized in the substantia nigra (SN) pars compacta in the CEPO-Fc group than in the PBS and EPO-Fc groups. In the neurorescue experiment, rats receiving CEPO-Fc showed significantly better behavioural scores than those receiving PBS. The histological data concerning striatum also showed that the CEPO-Fc group had significantly better preservation of TH-positive fibers compared to the PBS and EPO-Fc groups. Importantly, there were no increases in hematocrit or hemoglobin levels in the CEPO-Fc group in either the neuroprotection or the neurorescue experiments. In conclusion, the newly developed CEPO-Fc might confer neuroprotective and neurorescue benefits in a rat model of Parkinson's disease without the side effects associated with polycythemia. CEPO-Fc might be a therapeutic tool for patients with Parkinson's disease
    corecore