162 research outputs found

    Authors' Reply to Comments from Dr. Guan

    Get PDF

    Metallothionein as an Anti-Inflammatory Mediator

    Get PDF
    The integration of knowledge concerning the regulation of MT, a highly conserved, low molecular weight, cystein-rich metalloprotein, on its proposed functions is necessary to clarify how MT affects cellular processes. MT expression is induced/enhanced in various tissues by a number of physiological mediators. The cellular accumulation of MT depends on the availability of cellular zinc derived from the diet. MT modulates the binding and exchange/transport of heavy metals such as zinc, cadmium, or copper under physiological conditions and cytoprotection from their toxicities, and the release of gaseous mediators such as hydroxyl radicals or nitric oxide. In addition, MT reportedly affects a number of cellular processes, such as gene expression, apoptosis, proliferation, and differentiation. Given the genetic approach, the apparently healthy status of MT-deficient mice argues against an essential biological role for MT; however, this molecule may be critical in cells/tissues/organs in times of stress, since MT expression is also evoked/enhanced by various stresses. In particular, because metallothionein (MT) is induced by inflammatory stress, its roles in inflammation are implied. Also, MT expression in various organs/tissues can be enhanced by inflammatory stimuli, implicating in inflammatory diseases. In this paper, we review the role of MT of various inflammatory conditions

    Impact of Diesel Exhaust Particles on Th2 Response in the Lung in Asthmatic Mice

    Get PDF
    Although it has been accepted that pulmonary exposure to diesel exhaust particles (DEP), representative constituents in particulate matter of mass median aerodynamic diameter < or 2.5 µm (PM2.5), exacerbates murine allergic asthma, the in vivo effects of DEP on their cellular events in the context of allergen-specific Th response have never been examined. The aim of this study is to elucidate whether in vivo repetitive exposure to DEP combined with allergen (ovalbumin) facilitate allergen-specific Th response in the lung using a simple ex vivo assay system. As a result, repetitive pulmonary exposure to DEP in vivo, if combined with allergen, amplifies ex vivo allergen-specific Th2 response in the lung compared to that to allergen alone, characterized by high levels of interleukin (IL)-4 and IL-5. The result suggests that in asthmatic subjects, DEP promote Th2-prone milieu in the lung, which additively/synergistically augment asthma pathophysiology in vivo

    Extensive Analysis of Elastase-Induced Pulmonary Emphysema in Rats: ALP in the Lung, a New Biomarker for Disease Progression?

    Get PDF
    It is accepted that pulmonary exposure of rodents to porcine pancreatic elastase (ELT) induces lesions that morphologically resemble human emphysema. Nonetheless, extensive analysis of this model has rarely been conducted. The present study was designed to extensively examine the effects of ELT on lung inflammation, cell damage, emphysematous change, and cholinergic reactivity in rats. Intratracheal administration of two doses of ELT induced 1) a proinflammatory response in the lung that was characterized by significant infiltration of macrophages and an increased level of interleukin-1β in lung homogenates, 2) lung cell damage as indicated by higher levels of total protein, lactate dehydrogenase, and alkaline phosphatase (ALP) in lung homogenates, 3) emphysema-related morphological changes including airspace enlargement and progressive destruction of alveolar wall structures, and 4) airway responsiveness to methacholine including an augmented Rn value. In addition, ELT at a high dose was more effective than that at a low dose. This is the novel study to extensively analyze ELT-induced lung emphysema, and the analysis might be applied to future investigations that evaluate new therapeutic agents or risk factors for pulmonary emphysema. In particular, ALP in lung homogenates might be a new biomarker for the disease progression/exacerbation

    Effect modification by temperature on the association between O3 and emergency ambulance dispatches in Japan: A multi-city study

    Get PDF
    Numerous epidemiological studies have reported that ozone (O₃) and temperature are independently associated with health outcomes, but modification of the effects of O₃ on health outcomes by temperature, and vice versa, has not been fully described. This study aimed to investigate effect modification by temperature on the association between O₃ and emergency ambulance dispatches (EADs) in Japan. Data on daily air pollutants, ambient temperature, and EADs were obtained from eight Japanese cities from 2007 to 2015. A distributed lag non-linear model combined with Poisson regression was performed with temperature as a confounding factor and effect modifier to estimate the effects of O₃ on EADs at low (75th percentile) temperature for each city. The estimates obtained from each city were pooled by random-effects meta-analysis. When temperature was entered as a confounder, the estimated effects of O₃ on EADs for all acute, cardiovascular, and respiratory illnesses were largest at lag 0 (current-day lag). Therefore, this lag was used to further estimate the effects of O₃ on EADs in each temperature category. The estimated effects of O₃ on EADs for all acute, cardiovascular, and respiratory illnesses in all eight Japanese cities increased with increasing temperature. Specifically, a 10 ppb increase in O₃ was associated with 0.80 % (95 % CI: 0.25 to 1.35), 0.19 % (95 % CI: -0.85 to 1.25), and 1.14 % (95 % CI: -0.01 to 2.31) increases in the risk of EADs for all acute, cardiovascular, and respiratory illnesses, respectively, when city-specific daily temperature exceeded the 75th percentile. Our findings suggest that the association between O₃ and EADs for all acute, cardiovascular, and respiratory illnesses is the highest during high temperature. Finding of this study can be used to develop potential mitigation measures against O₃ exposure in high temperature environment to reduce its associated adverse health effects

    Enhancement of OVA-induced murine lung eosinophilia by co-exposure to contamination levels of LPS in Asian sand dust and heated dust.

    Get PDF
    BackgroundA previous study has shown that the aggravation of Asian sand dust (ASD) on ovalbumin (OVA)-induced lung eosinphilia was more severe in lipopolysaccharide (LPS)-rich ASD than in SiO2-rich ASD. Therefore, the effects of different LPS contamination levels in ASD on the aggravation of OVA-induced lung eosinophilia were investigated in the present study.MethodsBefore beginning the in vivo experiment, we investigated whether the ultra-pure LPS would act only on TLR4 or not using bone marrow-derived macrophages (BMDMs) of wild-type, TLR2-/-, TLR4-/- and MyD88-/- BALB/c mice. ASD collected from the desert was heated to remove toxic organic substances (H-ASD). BALB/c mice were instilled intratracheally with 12 different testing samples prepared with LPS (1&nbsp;ng and 10&nbsp;ng), H-ASD, and OVA in a normal saline solution. The lung pathology, cytological profiles in the bronchoalveolar lavage fluid (BALF), the levels of inflammatory cytokines/chemokines in BALF and OVA-specific immunoglobulin in serum were investigated.ResultsThe LPS exhibited no response to the production of TNF-α and IL-6 in BMDMs from TLR4-/-, but did from TLR2-/-. H-ASD aggravated the LPS-induced neutrophilic lung inflammation. In the presence of OVA, LPS increased the level of eosinophils slightly and induced trace levels of Th2 cytokines IL-5 and IL-13 at the levels of 1&nbsp;ng and 10&nbsp;ng. In the presence of OVA and H-ASD, LPS induced severe eosinophil infiltration and proliferation of goblet cells in the airways as well as remarkable increases in Th2 cytokines IL-5 and IL-13 in BALF. The mixture containing LPS (1&nbsp;ng) showed adjuvant activity on OVA-specific IgE and IgG1 production.ConclusionsThe results suggest that H-ASD with naturally-occurring levels of LPS enhances OVA-induced lung eosinophilia via increases in Th2-mediated cytokines and antigen-specific immunoglobulin. These results indicate that LPS is a strong candidate for being a major aggravating substance in ASD
    corecore