28 research outputs found

    Thermal gradient of in-flight polymer particles during cold spraying

    Get PDF
    International audienceThe manufacture of polymer coatings via the cold-spray process remains challenging owing to the viscoelastic-viscoplastic behavior exhibited by polymers. One crucial step to improve cold-spray polymer coating is to determine the particles' thermal history during their flight from inside the nozzle to their impact on the substrate. In this study, we propose estimating the velocity and temperature of an isolated polymer particle traveling through a nozzle with a sharp change in its cross-section. The preliminary results show that the geometric discontinuity constricts the flow, thereby increasing the particle velocity. Moreover, a significant thermal gradient is expected inside the particle, which in turn leads to a gradient of mechanical properties of the polymeric particle during impact

    Spatiotemporal dynamics of discrete sine-Gordon lattices with sinusoidal couplings

    Full text link
    The spatiotemporal dynamics of a damped sine-Gordon chain with sinusoidal nearest-neighbor couplings driven by a constant uniform force are discussed. The velocity characteristics of the chain versus the external force is shown. Dynamics in the high- and low-velocity regimes are investigated. It is found that in the high-velocity regime, the dynamics is dominated by rotating modes, the velocity shows a branching bifurcation feature, while in the low-velocity regime, the velocity exhibits step-like dynamical transitions, broken by the destruction of strong resonances.Comment: 10 Revtex pages, 8 Eps figures, to appear in Phys. Rev.E 57(1998

    Computational simulation of reactive species production by methane-air DBD at high pressure and high temperature

    No full text
    Computational simulations of a single streamer in DBD in lean methane-air mixture at pressure of 1 and 3 atm and temperature of 300 and 500 K were conducted for plasma-enhanced chemical reactions in a closed system. The effects of surrounding pressure and temperature are characterized for reactive species production by a DBD discharge. The results show that the production characteristics of reactive species are strongly influenced by the total gas number density and the higher concentration of reactive species are produced at higher pressure and lower gas temperature for a given initial reduced electric field
    corecore