142 research outputs found

    Atomic masses of intermediate-mass neutron-deficient nuclei with relative uncertainty down to 35-ppb via multireflection time-of-flight mass spectrograph

    Full text link
    High-precision mass measurements of 63^{63}Cu, 6466^{64-66}Zn, 65^{65}Ga, 6567^{65-67}Ge, 67^{67}As, 78,81^{78,81}Br, 80^{80}Rb, and 79^{79}Sr were performed utilizing a multireflection time-of-flight mass spectrograph combined with the gas-filled recoil ion separator GARIS-II. In the case of 65^{65}Ga, a mass uncertainty of 2.1 keV, corresponding to a relative precision of δm/m=3.5×108\delta m / m = 3.5\times10^{-8}, was obtained and the mass value is in excellent agreement with the 2016 Atomic Mass Evaluation. For 67^{67}Ge and 81^{81}Br, where masses were previously deduced through indirect measurements, discrepancies with literature values were found. The feasibility of using this device for mass measurements of nuclides more neutron-deficient side, which have significant impact on the rprp-process pathway, is discussed.Comment: 15 pages, 6 figures, 1 tabl

    First Direct Mass Measurements of Nuclides around Z=100 with a Multireflection Time-of-Flight Mass Spectrograph

    Get PDF
    The masses of 246Es, 251Fm, and the transfermium nuclei 249−252Md and 254No, produced by hot- and cold-fusion reactions, in the vicinity of the deformed N=152 neutron shell closure, have been directly measured using a multireflection time-of-flight mass spectrograph. The masses of 246Es and 249,250,252Md were measured for the first time. Using the masses of 249,250Md as anchor points for α decay chains, the masses of heavier nuclei, up to 261Bh and 266Mt, were determined. These new masses were compared with theoretical global mass models and demonstrated to be in good agreement with macroscopic-microscopic models in this region. The empirical shell gap parameter δ2n derived from three isotopic masses was updated with the new masses and corroborates the existence of the deformed N=152 neutron shell closure for Md and Lr

    The new MRTOF mass spectrograph following the ZeroDegree spectrometer at RIKEN's RIBF facility

    Full text link
    A newly assembled multi-reflection time-of-flight mass spectrograph (MRTOF-MS) at RIKEN's RIBF facility became operational for the first time in spring 2020; further modifications and performance tests using stable ions were completed in early 2021. By using a pulsed-drift-tube technique to modify the ions' kinetic energy in a wide range, we directly characterize the dispersion function of the system for use in a new procedure for optimizing the voltages applied to the electrostatic mirrors. Thus far, a mass resolving power of Rm>1000000R_m > 1\,000\,000 is reached within a total time-of-flight of only 12.5ms12.5\,\mathrm{ms}, making the spectrometer capable of studying short-lived nuclei possessing low-lying isomers. Detailed information about the setup and measurement procedure is reported, and an alternative in-MRTOF ion selection scheme to remove molecular contaminants in the absence of a dedicated deflection device is introduced. The setup underwent an initial on-line commissioning at the BigRIPS facility at the end of 2020, where more than 70 nuclear masses have been measured. A summary of the commissioning experiments and results from a test of mass accuracy will be presented.Comment: 13 pages, 11 figure
    corecore