21 research outputs found

    Advertising semantically described physical items with bluetooth low energy beacons

    No full text

    SIC-EDGE: Semantic Iterative ECG Compression for Edge-Assisted Wearable Systems

    No full text

    Explainable Steel Quality Prediction System Based on Gradient Boosting Decision Trees

    No full text
    The steelmaking industry is one of the most energy-intensive industries and is responsible for 4% of the world's total greenhouse gas emissions. Solutions to improve operational efficiency can therefore bring major improvements to the overall environmental performance of the entire industry. This article proposes a novel steel quality prediction system based on gradient boosting trees that can be used to predict the quality of steel products during manufacturing. The prediction system enables the detection of possible surface defects in the early phase of the manufacturing process, thus avoiding costly and time-consuming manufacturing efforts to address defective products. In this study, we trained a prediction model with data collected from an SSAB Europe steelmaking plant in Raahe, Finland. From the 296 process parameters measured in the liquid steel stage of steelmaking, we selected 89 input features to train and test the prediction model. The model was then integrated into a quality monitoring tool (QMT) to utilize real-time manufacturing data in its predictions. The validation process showed that the prediction model can find more than 50% of defective steel products by marking only about 10% of the steel products as potentially at risk of surface defects in plate rolling. This can potentially save time in the quality control phase and improve process efficiency. To gain more insights into the model predictions, we used SHAP (SHapley Additive exPlanations) to find a potential connection between the process input parameters and surface defects

    Enabling End-Users to Configure Smart Environments

    No full text

    Enabling semantic technology empowered smart spaces

    Get PDF
    It has been proposed that Semantic Web technologies would be key enablers in achieving context-aware computing in our everyday environments. In our vision of semantic technology empowered smart spaces, the whole interaction model is based on the sharing of semantic data via common blackboards. This approach allows smart space applications to take full advantage of semantic technologies. Because of its novelty, there is, however, a lack of solutions and methods for developing semantic smart space applications according to this vision. In this paper, we present solutions to the most relevant challenges we have faced when developing context-aware computing in smart spaces. In particular the paper describes (1) methods for utilizing semantic technologies with resource restricted-devices, (2) a solution for identifying real world objects in semantic technology empowered smart spaces, (3) a method for users to modify the behavior of context-aware smart space applications, and (4) an approach for content sharing between autonomous smart space agents. The proposed solutions include ontologies, system models, and guidelines for building smart spaces with the M3 semantic information sharing platform. To validate and demonstrate the approaches in practice, we have implemented various prototype smart space applications and tools
    corecore