25 research outputs found
Net Greenhouse Gas Budget and Soil Carbon Storage in a Field with Paddy–Upland Rotation with Different History of Manure Application
Methane (CH4) and nitrous oxide (N2O) fluxes were measured from paddy–upland rotation (three years for soybean and three years for rice) with different soil fertility due to preceding compost application for four years (i.e., 3 kg FW m−2 year−1 of immature or mature compost application plots and a control plot without compost). Net greenhouse gas (GHG) balance was evaluated by integrating CH4 and N2O emissions and carbon dioxide (CO2) emissions calculated from a decline in soil carbon storage. N2O emissions from the soybean upland tended to be higher in the immature compost plot. CH4 emissions from the rice paddy increased every year and tended to be higher in the mature compost plot. Fifty-two to 68% of the increased soil carbon by preceding compost application was estimated to be lost during soybean cultivation. The major component of net GHG emission was CO2 (82–94%) and CH4 (72–84%) during the soybean and rice cultivations, respectively. Net GHG emissions during the soybean and rice cultivations were comparable. Consequently, the effects of compost application on the net GHG balance from the paddy–upland rotation should be carefully evaluated with regards to both advantages (initial input to the soil) and disadvantages (following increases in GHG)
Landscape Microzones within Thermokarst Depressions of Central Yakutia under Present Climatic Conditions
Thermokarst (alas) of Central Yakutia is an intrazonal dynamic landscape in the form of rounded depressions with peculiar soils and meadow vegetation, microclimate, and fauna that are very different from the surrounding typical taiga landscapes. During the formation of alas depression, complete processing of thawed ground with the formation of new soils occurs and entirely changes the biogeochemical cycle. Because this system is closed, all water-soluble substances, such as N/C and soluble salts, etc., accumulate inside the depression. Using standard methods and instruments, we measured the main properties of alas soils. Depending on the hydrothermal and physicochemical regimes, thawing depth, and greenhouse gas (GHG) flux, three main belts of soils and vegetation were distinguished within the alas: (1) steppe meadow, located on most elevated places, not sufficiently moistened, with alas steppe soils and steppe vegetation; (2) middle meadow, located lower than stepped meadow in elevation, normally moist, with alas sod-meadow soils and highest productivity vegetation; and (3) wet meadow, located around the lake, excessively moistened, with alas marshy sod-meadow soils and marsh vegetation. Therefore, the soils of wet and real meadows, due to the abundance of organic matter, are significant sources of CO2 and CH4, especially in humid years. Under the climate warming observed over recent decades in this territory, the alas ecosystem has undergone considerable change. Thus, the classification and mapping of belts within the alas can have both applied and fundamental importance
Emergence and behaviors of acid-tolerant Janthinobacterium sp. that evolves N2O from deforested tropical peatland
Using a soilless culture system mimicking tropical acidic peat soils, which contained 3 mg of gellan gum and 0.5 mg NO3−-N per gram of medium, a greenhouse gas, N2O emitting capability of microorganisms in acidic peat soil in the area of Palangkaraya, Central Kalimantan, Indonesia, was investigated. The soil sampling sites included a native swamp forest (NF), a burnt forest covered by ferns and shrubs (BF), three arable lands (A-1, A-2 and A-3) and a reclaimed grassland (GL) next to the arable lands. An acid-tolerant Janthinobacterium sp. strain A1-13 (Oxalobacteriaceae, β-proteobacteria) isolated from A-1 soil was characterized as one of the most prominent N2O-emitting bacteria in this region. Physiological characteristics of the N2O emitter in the soilless culture system, including responses to soil environments, substrate concentration, C-source concentration, pH, and temperature, suggest that the N2O emitting Janthinobacterium sp. strain A1-13 is highly adapted to reclaimed open peatland and primarily responsible for massive N2O emissions from the acidic peat soils. Regulation of N2O emitters in the reclaimed peatland for agricultural use is therefore one of the most important issues in preventing the greenhouse gas emission from acidic peat soil farmlands
Nitrous oxide emission derived from soil organic matter decomposition from tropical agricultural peat soil in central Kalimantan, Indonesia
Our previous research showed large amounts of nitrous oxide (N2O) emission (>200 kg N ha^[-1] yr^[-1]) from agricultural peat soil. In this study, we investigated the factors influencing relatively large N2O fluxes and the source of nitrogen (N) substrate for N2O in a tropical peatland in central Kalimantan, Indonesia. Using a static chamber method, N2O and carbon dioxide (CO2) fluxes were measured in three conventionally cultivated croplands (conventional), an unplanted and unfertilized bare treatment (bare) in each cropland, and unfertilized grassland over a 3-year period. Based on the difference in N2O emission from two treatments, contribution of the N source for N2O was calculated. Nitrous oxide concentrations at five depths (5-80 cm) were also measured for calculating net N2O production in soil. Annual N fertilizer application rates in the croplands ranged from 472 to 1,607 kg N ha^[-1] yr^[-1]. There were no significant differences in between N2O fluxes in the two treatments at each site. Annual N2O emission in conventional and bare treatments varied from 10.9 to 698 and 6.55 to 858 kg N ha^[-1] year^[-1], respectively. However, there was also no significant difference between annual N2O emissions in the two treatments at each site. This suggests most of the emitted N2O was derived from the decomposition of peat. There were significant positive correlations between N2O and CO2 fluxes in bare treatment in two croplands where N2O flux was higher than at another cropland. Nitrous oxide concentration distribution in soil measured in the conventional treatment showed that N2O was mainly produced in the surface soil down to 15 cm in the soil. The logarithmic value of the ratio of N2O flux and nitrate concentration was positively correlated with water filled pore space. These results suggest that large N2O emission in agricultural tropical peatland was caused by denitrification with high decomposition of peat. In addition, N2O was mainly produced by denitrification at high range of WFPS in surface soil
Effects of Forage Rice Cultivation on Carbon and Greenhouse Gas Balances in a Rice Paddy Field
The effects of conversion from staple rice to forage rice on carbon and greenhouse gas (GHG) balances in a paddy field were evaluated. A staple rice plot without the application of livestock manure compost (LMC, S − M plot) and forage rice plots with and without the application of LMC, derived mainly from cattle (2 kg−FW m−2, F + M and F − M plots, respectively), were established. CH4 and N2O fluxes and CO2 flux from a bare soil plot for organic matter decomposition (OMD) were measured. The carbon budget was calculated by subtracting the OMD, CH4 emission, and harvested grain and straw (forage rice only) from the net primary production and LMC. The net GHG balance was calculated by integrating them as CO2 equivalents. There were no significant differences in GHG flux among the plots. Compared to the carbon loss in the S − M plot, the loss increased by harvesting straw and was mitigated by LMC application. The net GHG emission in the F + M plot was significantly lower than that in other plots (1.78 and 2.63−2.77 kg CO2-eq m−2 year−1, respectively). There is a possibility that GHG emissions could be suppressed by forage rice cultivation with the application of LMC
Spatial Evaluation of Greenhouse Gas Fluxes in a Sasa (Dwarf Bamboo) Invaded Wetland Ecosystem in Central Hokkaido, Japan
To evaluate the effect of vegetation change on greenhouse gas (GHG) budget from a wetland ecosystem, the CO2, CH4 and N2O budgets from whole area (21.5 ha) of the Bibai Wetland, where dwarf bamboo (Sasa) or Ilex has invaded into original Sphagnum dominated vegetation, located in Hokkaido, Japan were estimated. The original Sphagnum-dominated vegetation was changed from a sink to a source of CO2 by invasion of short-Sasa (50 cm > height), while the invasion of tall-Sasa (50 cm < height < 150 cm) or Ilex increased CO2 uptake. Annual CH4 emission was decreased by the invasion of Sasa or Ilex. The annual N2O emission was slightly increased by invasion of Ilex only. These GHG budgets were correlated with the environmental factors related to the water table depth. The distribution of vegetation and environmental factors was estimated from satellite image bands, and the GHG budget of the entire wetland was estimated. The whole wetland area was considered to be a sink for GHG (−113 Mg CO2-eq y−1) and CO2 uptake by tall-Sasa occupied 71% of the GHG budget. The vegetation change due to the lowering of the water table depth currently increases the rate of carbon accumulation in the ecosystem by about 5 times
Net Greenhouse Gas Budget and Soil Carbon Storage in a Field with Paddy–Upland Rotation with Different History of Manure Application
Methane (CH4) and nitrous oxide (N2O) fluxes were measured from paddy–upland rotation (three years for soybean and three years for rice) with different soil fertility due to preceding compost application for four years (i.e., 3 kg FW m−2 year−1 of immature or mature compost application plots and a control plot without compost). Net greenhouse gas (GHG) balance was evaluated by integrating CH4 and N2O emissions and carbon dioxide (CO2) emissions calculated from a decline in soil carbon storage. N2O emissions from the soybean upland tended to be higher in the immature compost plot. CH4 emissions from the rice paddy increased every year and tended to be higher in the mature compost plot. Fifty-two to 68% of the increased soil carbon by preceding compost application was estimated to be lost during soybean cultivation. The major component of net GHG emission was CO2 (82–94%) and CH4 (72–84%) during the soybean and rice cultivations, respectively. Net GHG emissions during the soybean and rice cultivations were comparable. Consequently, the effects of compost application on the net GHG balance from the paddy–upland rotation should be carefully evaluated with regards to both advantages (initial input to the soil) and disadvantages (following increases in GHG)