4,906 research outputs found

    Observation of Magnetic Edge State and Dangling Bond State on Nanographene in Activated Carbon Fibers

    Full text link
    The electronic structure of nanographene in pristine and fluorinated activated carbon fibers (ACFs) have been investigated with near-edge x-ray absorption fine structure (NEXAFS) and compared with magnetic properties we reported on previously. In pristine ACFs in which magnetic properties are governed by non-bonding edge states of the \pi-electron, a pre-peak assigned to the edge state was observed below the conduction electron {\pi}* peak close to the Fermi level in NEXAFS. Via the fluorination of the ACFs, an extra peak, which was assigned to the \sigma-dangling bond state, was observed between the pre-peak of the edge state and the {\pi}* peak in the NEXAFS profile. The intensities of the extra peak correlate closely with the spin concentration created upon fluorination. The combination of the NEXAFS and magnetic measurement results confirms the coexistence of the magnetic edge states of \pi-electrons and dangling bond states of \sigma-electrons on fluorinated nanographene sheets.Comment: 4 figures, to appear in Phys. Rev.

    A Nuclear Physics Program at the ATLAS Experiment at the CERN Large Hadron Collider

    Full text link
    The ATLAS collaboration has significant interest in the physics of ultra-relativistic heavy ion collisions. We submitted a Letter of Intent to the United States Department of Energy in March 2002. The following document is a slightly modified version of that LOI. More details are available at: http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/SM/ionsComment: Letter of Intent submitted to the United States Department of Energy Nuclear Physics Division in March 2002 (revised version

    KINETIC FACTORS DIFFERENTIATING MID-TO-LATE SPRINT ACCELERATION PERFORMANCE IN SPRINTERS AND SOCCER PLAYERS

    Get PDF
    High-speed running in soccer is an important skill, however, the underlying kinetic factors are not fully understood. Ground reaction forces from steps 8 to 24 of maximal-effort sprints were captured for 24 soccer players and 28 track and field athletes using 54 force plates. Correlations between discrete force variables and horizontal acceleration were assessed, and statistical parametric mapping revealed performance associations across entire waveforms. Track and field athletes produced higher forces (mean anteroposterior: 1.56 N·kg-1) across shorter contacts (0.101 s) than soccer players (1.27 N·kg-1, 0.110 s). Interestingly, the technical ability to apply force and the performance-differentiating parts of stance were similar across groups. Thus, practitioners should perhaps target physical (force production) rather than technical factors to improve soccer players’ sprint abilities

    Novel electronic wave interference patterns in nanographene sheets

    Full text link
    Superperiodic patterns with a long distance in a nanographene sheet observed by STM are discussed in terms of the interference of electronic wave functions. The period and the amplitude of the oscillations decrease spatially in one direction. We explain the superperiodic patterns with a static linear potential theoretically. In the k-p model, the oscillation period decreases, and agrees with experiments. The spatial difference of the static potential is estimated as 1.3 eV for 200 nm in distance, and this value seems to be reasonable in order that the potential difference remains against perturbations, for example, by phonon fluctuations and impurity scatterings. It turns out that the long-distance oscillations come from the band structure of the two-dimensional graphene sheet.Comment: Published as a LETTER in J. Phys.: Condens. Matter; 8 pages; 6 figures; Online version at http://www.iop.org/EJ/S/3/1256/0hJAmc5sCL6d.7sOO.BtLw/abstract/0953-8984/14/3 6/10

    Conductance and persistent current of a quantum ring coupled to a quantum wire under external fields

    Full text link
    The electronic transport of a noninteracting quantum ring side-coupled to a quantum wire is studied via a single-band tunneling tight-binding Hamiltonian. We found that the system develops an oscillating band with antiresonances and resonances arising from the hybridization of the quasibound levels of the ring and the coupling to the quantum wire. The positions of the antiresonances correspond exactly to the electronic spectrum of the isolated ring. Moreover, for a uniform quantum ring the conductance and the persistent current density were found to exhibit a particular odd-even parity related with the ring-order. The effects of an in-plane electric field was also studied. This field shifts the electronic spectrum and damps the amplitude of the persistent current density. These features may be used to control externally the energy spectra and the amplitude of the persistent current.Comment: Revised version, 7 pages and 9 figures. To appear in Phys. Rev.

    Obstacle Effects on Airflow and Containment Dispersion around a Naturally Ventilated Livestock Building

    Full text link
    Rosana G. Moreira, Editor-in-Chief; Texas A&M UniversityThis is a Technical Paper from International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal Volume 5 (2003): G. Zhang, A. Ikeguchi, J. Strom, S. Morsing, H. Takai, P. Ravn, and L. Okushima. Obstacle Effects on Airflow and Containment Dispersion around a Naturally Ventilated Livestock Building. Vol. V. December 2003

    Persistent Currents in the Presence of a Transport Current

    Get PDF
    We have considered a system of a metallic ring coupled to two electron reservoirs. We show that in the presence of a transport current, the persistent current can flow in a ring, even in the absence of magnetic field. This is purely a quantum effect and is related to the current magnification in the loop. These persistent currents can be observed if one tunes the Fermi energy near the antiresonances of the total transmission coefficient or the two port conductance.Comment: To appear in Phys. Rev. B. Three figures available on reques

    Sclerite formation in the hydrothermal-vent “scaly-foot” gastropod — possible control of iron sulfide biomineralization by the animal

    Get PDF
    A gastropod from a deep-sea hydrothermal field at the Rodriguez triple junction, Indian Ocean, has scale-shaped structures, called sclerites, mineralized with iron sulfides on its foot. No other organisms are known to produce a skeleton consisting of iron sulfides. To investigate whether iron sulfide mineralization is mediated by the gastropod for the function of the sclerites, we performed a detailed physical and chemical characterization. Nanostructural characterization of the iron sulfide sclerites reveals that the iron sulfide minerals pyrite (FeS2) and greigite (Fe3S4) form with unique crystal habits inside and outside of the organic matrix, respectively. The magnetic properties of the sclerites, which are mostly consistent with those predicted from their nanostructual features, are not optimized for magnetoreception and instead support use of the magnetic minerals as structural elements. The mechanical performance of the sclerites is superior to that of other biominerals used in the vent environment for predation as well as protection from predation. These characteristics, as well as the co-occurrence of brachyuran crabs, support the inference that the mineralization of iron sulfides might be controlled by the gastropod to harden the sclerites for protection from predators. Sulfur and iron isotopic analyses indicate that sulfur and iron in the sclerites originate from hydrothermal fluids rather than from bacterial metabolites, and that iron supply is unlikely to be regulated by the gastropod for iron sulfide mineralization. We propose that the gastropod may control iron sulfide mineralization by modulating the internal concentrations of reduced sulfur compounds
    • …
    corecore