231 research outputs found

    Respective roles of Kr-h1, Br and E93 in hemimetabolous metamorphosis

    Get PDF
    Juvenile hormones (JHs) and the genetic interaction between the transcription factors Krüppel homolog 1 (Kr-h1) and Broad (Br) regulate the transformation of insects from immature to adult forms in both types of metamorphosis (holometaboly with a pupal stage versus hemimetaboly with no pupal stage); however, knowledge about the exact instar in which this occurs is limited. Using the hemimetabolous cricket Gryllus bimaculatus (Gb), we demonstrate that a genetic interaction occurs among Gb’Kr-h1, Gb’Br and the adult-specifier transcription factor Gb’E93 from the sixth to final (eighth) nymphal instar. Gb’Kr-h1 and Gb’Br mRNAs were strongly expressed in the abdominal tissues of sixth instar nymphs, with precocious adult moults being induced by Gb’Kr-h1 or Gb’Br knockdown in the sixth instar. Depletion of Gb’Kr-h1 or Gb’Br up-regulates Gb’E93 in the sixth instar. In contrast, Gb’E93 knockdown at the sixth instar prevents nymphs transitioning to adults, instead producing supernumerary nymphs. Gb’E93 also represses Gb’Kr-h1 and Gb’Br expression in the penultimate nymphal instar, demonstrating its important role in adult differentiation. Our results suggest that the regulatory mechanisms underlying the pupal transition in holometabolous insects are evolutionarily conserved in hemimetabolous G. bimaculatus, with the penultimate and final nymphal periods being equivalent to the pupal stage

    Pectoralis Major and Serratus Anterior Muscle Flap for Diaphragmatic Reconstruction

    Get PDF
    We have reported a new reconstruction method using a pectoralis major and serratus anterior muscle flap for diaphragmatic defects after chondrosarcoma resection. The reconstruction of diaphragmatic defects is challenging. In diaphragmatic reconstruction with chest wall defects, strong chest wall reconstruction and diaphragmatic flexibility are important to avoid interference with respiration. The artificial material Gore-Tex is used as the first choice, but it has infection-, exposure-, and durability-related drawbacks. As an alternative method using artificial material, we have reported our new technique—diaphragmatic reconstruction using a reversed-combined pectoralis major and serratus anterior muscle flap

    KINETIC ADJUSTMENTS OF SUBMAXIMAL SOCCER INSTEP KICKING

    Get PDF
    We aimed to demonstrate segmental dynamics during submaximal effort of soccer instep kicking. Eight male university level soccer players volunteered. Their kicking motions at 50, 75 and 100 % effort levels were captured at 500 Hz and the resultant ball velocities were monitored simultaneously using a pair of photocells. Apparent kinetic adjustments (angular impulses due to resultant joint and interaction moments) were clearly identified in both proximal and distal segments in response to the three target effort levels, thereby supporting the interpretation that the velocity of the distal end of the leg (foot) is controlled in a context of a proximal to distal segmental sequential system. Additionally, these players tended to hit the lower, off-centre part of the ball and also hit the ball more on the medial side of the foot using a less upright foot position to meet the lowered demands

    Knockout crickets for the study of learning and memory : Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets

    Get PDF
    Elucidation of reinforcement mechanisms in associative learning is an important subject in neuroscience. In mammals, dopamine neurons are thought to play critical roles in mediating both appetitive and aversive reinforcement. Our pharmacological studies suggested that octopamine and dopamine neurons mediate reward and punishment, respectively, in crickets, but recent studies in fruit-flies concluded that dopamine neurons mediates both reward and punishment, via the type 1 dopamine receptor Dop1. To resolve the discrepancy between studies in different insect species, we produced Dop1 knockout crickets using the CRISPR/Cas9 system and found that they are defective in aversive learning with sodium chloride punishment but not appetitive learning with water or sucrose reward. The results suggest that dopamine and octopamine neurons mediate aversive and appetitive reinforcement, respectively, in crickets. We suggest unexpected diversity in neurotransmitters mediating appetitive reinforcement between crickets and fruit-flies, although the neurotransmitter mediating aversive reinforcement is conserved. This study demonstrates usefulness of the CRISPR/Cas9 system for producing knockout animals for the study of learning and memory

    Short germ insects utilize both the ancestral and derived mode of Polycomb group-mediated epigenetic silencing of Hox genes

    Get PDF
    In insect species that undergo long germ segmentation, such as Drosophila, all segments are specified simultaneously at the early blastoderm stage. As embryogenesis progresses, the expression boundaries of Hox genes are established by repression of gap genes, which is subsequently replaced by Polycomb group (PcG) silencing. At present, however, it is not known whether patterning occurs this way in a more ancestral (short germ) mode of embryogenesis, where segments are added gradually during posterior elongation. In this study, two members of the PcG family, Enhancer of zeste (E(z)) and Suppressor of zeste 12 (Su(z)12), were analyzed in the short germ cricket, Gryllus bimaculatus. Results suggest that although stepwise negative regulation by gap and PcG genes is present in anterior members of the Hox cluster, it does not account for regulation of two posterior Hox genes, abdominal-A (abd-A) and Abdominal-B (Abd-B). Instead, abd-A and Abd-B are predominantly regulated by PcG genes, which is the mode present in vertebrates. These findings suggest that an intriguing transition of the PcG-mediated silencing of Hox genes may have occurred during animal evolution. The ancestral bilaterian state may have resembled the current vertebrate mode of regulation, where PcG-mediated silencing of Hox genes occurs before their expression is initiated and is responsible for the establishment of individual expression domains. Then, during insect evolution, the repression by transcription factors may have been acquired in anterior Hox genes of short germ insects, while PcG silencing was maintained in posterior Hox genes
    corecore