14 research outputs found

    Visualization of the spatial positioning of the SNRPN, UBE3A, and GABRB3 genes in the normal human nucleus by three-color 3D fluorescence in situ hybridization

    Get PDF
    The three-dimensional (3D) structure of the genome is organized non-randomly and plays a role in genomic function via epigenetic mechanisms in the eukaryotic nucleus. Here, we analyzed the spatial positioning of three target regions; the SNRPN, UBE3A, and GABRB3 genes on human chromosome 15q11.2–q12, a representative cluster of imprinted regions, in the interphase nuclei of B lymphoblastoid cell lines, peripheral blood cells, and skin fibroblasts derived from normal individuals to look for evidence of genomic organization and function. The positions of these genes were simultaneously visualized, and all inter-gene distances were calculated for each homologous chromosome in each nucleus after three-color 3D fluorescence in situ hybridization. None of the target genes were arranged linearly in most cells analyzed, and GABRB3 was positioned closer to SNRPN than UBE3A in a high proportion of cells in all cell types. This was in contrast to the genomic map in which GABRB3 was positioned closer to UBE3A than SNRPN. We compared the distances from SNRPN to UBE3A (SU) and from UBE3A to GABRB3 (UG) between alleles in each nucleus, 50 cells per subject. The results revealed that the gene-to-gene distance of one allele was longer than that of the other and that the SU ratio (longer/shorter SU distance between alleles) was larger than the UG ratio (longer/shorter UG distance between alleles). The UG distance was relatively stable between alleles; in contrast, the SU distance of one allele was obviously longer than the distance indicated by the genome size. The results therefore indicate that SNRPN, UBE3A, and GABRB3 have non-linear and non-random curved spatial positioning in the normal nucleus, with differences in the SU distance between alleles possibly representing epigenetic evidence of nuclear organization and gene expression

    Regulation of functional KCNQ1OT1 lncRNA by β-catenin.

    Get PDF
    Long noncoding RNAs (lncRNAs) have been implicated in many biological processes through epigenetic mechanisms. We previously reported that KCNQ1OT1, an imprinted antisense lncRNA in the human KCNQ1 locus on chromosome 11p15.5, is involved in cis-limited silencing within an imprinted KCNQ1 cluster. Furthermore, aberration of KCNQ1OT1 transcription was observed with a high frequency in colorectal cancers. However, the molecular mechanism of the transcriptional regulation and the functional role of KCNQ1OT1 in colorectal cancer remain unclear. Here, we show that the KCNQ1OT1 transcriptional level was significantly increased in human colorectal cancer cells in which β-catenin was excessively accumulated in the nucleus. Additionally, overexpression of β-catenin resulted in an increase in KCNQ1OT1 lncRNA-coated territory. On the other hand, knockdown of β-catenin resulted in significant decrease of KCNQ1OT1 lncRNA-coated territory and an increase in the mRNA expression of the SLC22A18 and PHLDA2 genes that are regulated by KCNQ1OT1. We showed that β-catenin can promote KCNQ1OT1 transcription through direct binding to the KCNQ1OT1 promoter. Our evidence indicates that β-catenin signaling may contribute to development of colorectal cancer by functioning as a novel lncRNA regulatory factor via direct targeting of KCNQ1OT1

    Left Hemihepatectomy for Hepatocellular Carcinoma Following Esophagectomy with Retrosternal Gastric Tube Reconstruction for Esophageal Cancer

    Get PDF
    Approximately 4% of patients with esophageal cancer develop a second primary malignancy in the upper gastrointestinal trunk. However, hepatectomy following esophagectomy for esophageal cancer has rarely been reported. We report the case of a 70-year-old man who underwent an esophagectomy for esophageal cancer with retrosternal gastric tube reconstruction. Nine years later, he developed hepatocellular carcinoma with tumor thrombus involving the left portal vein, and was successfully treated with left hemihepatectomy. Special attention should be paid to avoiding incidental injury of the gastric tube as well as the right gastroepiploic artery during the hepatectomy
    corecore