31 research outputs found

    ZFAT is an antiapoptotic molecule and critical for cell survival in MOLT-4 cells

    Get PDF
    AbstractZFAT (also known as ZNF406), originally identified as a candidate gene for autoimmune thyroid disease, encodes a zinc-finger protein, however, its function has not been elucidated. Here, we report that human ZFAT protein is expressed in peripheral B and T lymphocytes and a human acute T lymphoblastic leukaemia cell line, MOLT-4 cells. Intriguing is that mouse ZFAT expression in CD4+ lymphocytes is increased during blast formation. Furthermore, ZFAT-knockdown in MOLT-4 induces apoptosis via activation of caspases. These results suggested that ZFAT protein is a critical regulator involved in apoptosis and cell survival for immune-related cells

    Tespa1 is a novel inositol 1,4,5-trisphosphate receptor binding protein in T and B lymphocytes

    Get PDF
    AbstractTespa1 has been recently reported to be a critical molecule in T-cell development, however, the precise molecular mechanisms of Tespa1 remain elusive. Here, we demonstrate that Tespa1 shows amino-acid sequence homology to KRAS-induced actin-interacting protein (KRAP), an inositol 1,4,5-trisphosphate receptor (IP3R) binding protein, and that Tespa1 physically associates with IP3R in T and B lymphocytes. Two-consecutive phenylalanine residues (Phe185/Phe186) in Tespa1, which are conserved between Tespa1 and KRAP, are indispensable for the association between Tespa1 and IP3R. These findings suggest that Tespa1 plays critical roles in the immune system through the regulation of the IP3R

    Inhibition of Phosphodiesterase-4 (PDE4) activity triggers luminal apoptosis and AKT dephosphorylation in a 3-D colonic-crypt model

    Get PDF
    BACKGROUND: We previously established a three-dimensional (3-D) colonic crypt model using HKe3 cells which are human colorectal cancer (CRC) HCT116 cells with a disruption in oncogenic KRAS, and revealed the crucial roles of oncogenic KRAS both in inhibition of apoptosis and in disruption of cell polarity; however, the molecular mechanism of KRAS-induced these 3-D specific biological changes remains to be elucidated. RESULTS: Among the genes that were upregulated by oncogenic KRAS in this model, we focused on the phosphodiesterase 4B (PDE4B) of which expression levels were found to be higher in clinical tumor samples from CRC patients in comparison to those from healthy control in the public datasets of gene expression analysis. PDE4B2 was specifically overexpressed among other PDE4 isoforms, and re-expression of oncogenic KRAS in HKe3 cells resulted in PDE4B overexpression. Furthermore, the inhibition of PDE4 catalytic activity using rolipram reverted the disorganization of HCT116 cells into the normal physiologic state of the epithelial cell polarity by inducing the apical assembly of ZO-1 (a tight junction marker) and E-cadherin (an adherens junction marker) and by increasing the activity of caspase-3 (an apoptosis marker) in luminal cavities. Notably, rolipram reduced the AKT phosphorylation, which is known to be associated with the disruption of luminal cavity formation and CRC development. Similar results were also obtained using PDE4B2-shRNAs. In addition, increased expression of PDE4B mRNA was found to be correlated with relapsed CRC in a public datasets of gene expression analysis. CONCLUSIONS: These results collectively suggested that PDE4B is upregulated by oncogenic KRAS, and also that the inhibition of PDE4 catalytic activity can induce both epithelial cell polarity and luminal apoptosis in CRC, thus highlighting the utility of our 3-D culture (3 DC) model for the KRAS-induced development of CRC in 3-D microenvironment. Indeed, using this model, we found that PDE4B is a promising candidate for a therapeutic target as well as prognostic molecular marker in CRC. Further elucidation of the signaling network of PDE4B2 in 3 DC would provide a better understanding of CRC in vivo

    Altered Energy Homeostasis and Resistance to Diet-Induced Obesity in KRAP-Deficient Mice

    Get PDF
    Obesity and related metabolic disorders have become leading causes of adult morbidity and mortality. KRAP (Ki-ras-induced actin-interacting protein) is a cytoskeleton-associated protein and a ubiquitous protein among tissues, originally identified as a cancer-related molecule, however, its physiological roles remain unknown. Here we demonstrate that KRAP-deficient (KRAPβˆ’/βˆ’) mice show enhanced metabolic rate, decreased adiposity, improved glucose tolerance, hypoinsulinemia and hypoleptinemia. KRAPβˆ’/βˆ’ mice are also protected against high-fat diet-induced obesity and insulin resistance despite of hyperphagia. Notably, glucose uptake in the brown adipose tissue (BAT) in KRAPβˆ’/βˆ’ mice is enhanced in an insulin-independent manner, suggesting that BAT is involved in altered energy homeostasis in KRAPβˆ’/βˆ’ mice, although UCP (Uncoupling protein) expressions are not altered. Of interest is the down-regulation of fatty acid metabolism-related molecules, including acetyl-CoA carboxylase (ACC)-1, ACC-2 and fatty acid synthase in the liver of KRAPβˆ’/βˆ’ mice, which could in part account for the metabolic phenotype in KRAPβˆ’/βˆ’ mice. Thus, KRAP is a novel regulator in whole-body energy homeostasis and may be a therapeutic target in obesity and related diseases
    corecore