208 research outputs found

    Machine Learning for Observational Cosmology

    Full text link
    An array of large observational programs using ground-based and space-borne telescopes is planned in the next decade. The forthcoming wide-field sky surveys are expected to deliver a sheer volume of data exceeding an exabyte. Processing the large amount of multiplex astronomical data is technically challenging, and fully automated technologies based on machine learning and artificial intelligence are urgently needed. Maximizing scientific returns from the big data requires community-wide efforts. We summarize recent progress in machine learning applications in observational cosmology. We also address crucial issues in high-performance computing that are needed for the data processing and statistical analysis.Comment: 55 pages, 8 figures, submitted to Reports on Progress in Physic

    Inhibition of Rho-associated coiled-coil containing protein kinase enhances the activation of epidermal growth factor receptor in pancreatic cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rho-associated coiled-coil containing protein kinase (Rho-kinase/ROCK) is involved in various cellular functions including cell proliferation, and is generally considered to be oncogenic, while some studies show that ROCK functions as a negative regulator of cancer progression. As a result, the precise role of ROCK remains controversial. We have previously reported that Rho-kinase/ROCK negatively regulates epidermal growth factor (EGF)-induced cell proliferation in SW480 colon cancer cells. In the present study, we investigated the role of ROCK in EGF receptor (EGFR) signaling in the pancreatic cancer cell lines, Panc1, KP3 and AsPc1.</p> <p>Results</p> <p>In these cells, Y27632, a specific ROCK inhibitor, enhanced EGF-induced BrdU incorporation. The blockade of EGF stimulation utilizing anti-EGFR-neutralizing antibodies suppressed Panc1 cell proliferation. EGF induced RhoA activity, as well as the phosphorylation of cofilin and myosin light chain (MLC), both targets of ROCK signaling, and Y27632 suppressed both of these processes, indicating that the phosphorylation of cofilin and MLC by EGF occurs through ROCK in Panc1 cells. EGF-induced phosphorylation of EGFR at tyrosine residues was augmented when the cells were pretreated with Y27632 or were subjected to gene silencing using ROCK-siRNA. We also obtained similar results using transforming growth factor-α. In addition, EGF-induced phosphorylation of p44/p42 mitogen-activated protein kinase and Akt were also enhanced by Y27632 or ROCK-siRNA. Moreover, an immunofluorescence microscope study revealed that pretreatment with Y27632 delayed EGF-induced internalization of EGFR. Taken together, these data indicate that ROCK functions to switch off EGFR signaling by promoting the internalization of the EGFR.</p> <p>Conclusions</p> <p>While EGF first stimulates the activation of the EGFR and subsequently increases cancer cell proliferation, EGF concurrently induces the activation of ROCK, which then turns off the activated EGFR pathway via a negative feedback system.</p

    Cost-effectiveness of a hybrid emergency room system for severe trauma: a health technology assessment from the perspective of the third-party payer in Japan

    Get PDF
    Background: Hybrid emergency room (ER) systems, consisting of an angiography-computed tomography (CT) machine in a trauma resuscitation room, are reported to be effective for reducing death from exsanguination in trauma patients. We aimed to investigate the cost-effectiveness of a hybrid ER system in severe trauma patients without severe traumatic brain injury (TBI). Methods: We conducted a cost-utility analysis comparing the hybrid ER system to the conventional ER system from the perspective of the third-party healthcare payer in Japan. A short-term decision tree and a long-term Markov model using a lifetime time horizon were constructed to estimate quality-adjusted life years (QALYs) and associated lifetime healthcare costs. Short-term mortality and healthcare costs were derived from medical records and claims data in a tertiary care hospital with a hybrid ER. Long-term mortality and utilities were extrapolated from the literature. The willingness-to-pay threshold was set at 47,619perQALYgainedandthediscountratewas247,619 per QALY gained and the discount rate was 2%. Deterministic and probabilistic sensitivity analyses were conducted. Results: The hybrid ER system was associated with a gain of 1.03 QALYs and an increment of 33,591 lifetime costs compared to the conventional ER system, resulting in an ICER of $32,522 per QALY gained. The ICER was lower than the willingness-to-pay threshold if the odds ratio of 28-day mortality was < 0.66. Probabilistic sensitivity analysis indicated that the hybrid ER system was cost-effective with a 79.3% probability. Conclusion: The present study suggested that the hybri

    Results of the search for inspiraling compact star binaries from TAMA300's observation in 2000-2004

    Get PDF
    We analyze the data of TAMA300 detector to search for gravitational waves from inspiraling compact star binaries with masses of the component stars in the range 1-3Msolar. In this analysis, 2705 hours of data, taken during the years 2000-2004, are used for the event search. We combine the results of different observation runs, and obtained a single upper limit on the rate of the coalescence of compact binaries in our Galaxy of 20 per year at a 90% confidence level. In this upper limit, the effect of various systematic errors such like the uncertainty of the background estimation and the calibration of the detector's sensitivity are included.Comment: 8 pages, 4 Postscript figures, uses revtex4.sty The author list was correcte

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    Observation results by the TAMA300 detector on gravitational wave bursts from stellar-core collapses

    Get PDF
    We present data-analysis schemes and results of observations with the TAMA300 gravitational-wave detector, targeting burst signals from stellar-core collapse events. In analyses for burst gravitational waves, the detection and fake-reduction schemes are different from well-investigated ones for a chirp-wave analysis, because precise waveform templates are not available. We used an excess-power filter for the extraction of gravitational-wave candidates, and developed two methods for the reduction of fake events caused by non-stationary noises of the detector. These analysis schemes were applied to real data from the TAMA300 interferometric gravitational wave detector. As a result, fake events were reduced by a factor of about 1000 in the best cases. The resultant event candidates were interpreted from an astronomical viewpoint. We set an upper limit of 2.2x10^3 events/sec on the burst gravitational-wave event rate in our Galaxy with a confidence level of 90%. This work sets a milestone and prospects on the search for burst gravitational waves, by establishing an analysis scheme for the observation data from an interferometric gravitational wave detector
    corecore