397 research outputs found

    Stress, Microglial Activation, and Mental Disorders

    Get PDF
    Microglia play a major role in immune response in the brain. Recent progress in studies for microglia suggests that stress causes morphological alterations in microglia and affects microglial humoral release and phagocytosis. In this review, we present a molecular mechanism by which stress impacts microglia. Then, we describe current findings for the involvement of microglia in stress-related mental disorders including posttraumatic stress disorder (PTSD), depression, and pain enhancement. We focus on preclinical and clinical studies. Preclinical PTSD studies using animal models with fear memory dysregulation show neuroinflammation by microglia and altered microglial phagocytosis, two imaging studies and a postmortem study assessing neuroinflammation in PTSD patients show contradictory results. Imaging studies suggest neuroinflammation in depressed patients, postmortem studies show no microglial inflammatory changes in non-suicidal depressed patients. Although it has been established that microglia in the spinal cord play a pivotal role in chronic neuropathic pain, several preclinical studies suggest microglia also participate in stress-induced pain. A clinical study with induced microglia-like (iMG) cells and an imaging study indicate neuroinflammation by microglia in fibromyalgia patients. We believe that progress in interactive research between humans and animals elucidates the role of microglia in the pathophysiology of stress-related mental disorders

    Clarifying the Pathophysiological Mechanisms of Neuronal Abnormalities of NF1 by Induced-Neuronal (iN) Cells from Human Fibroblasts

    Get PDF
    Direct conversion techniques, which generate induced-neuronal (iN) cells from human fibroblasts in less than two weeks, are expected to discover unknown neuronal phenotypes of neuropsychiatric disorders. Here, we present unique gene expression and cell morphology profiles in iN cells derived from neurofibromatosis type 1 (NF1) patients. NF1 is a single-gene multifaceted disorder with relatively high co-occurrence of autism spectrum disorder (ASD). Adenylyl cyclase (AC) dysfunction is one of the candidate pathways in abnormal neuronal development in the brains of NF1 patients. In our study, microarray-based transcriptomic analysis of iN cells from healthy controls (males) and NF1 patients (males) revealed significantly different gene expression of 149 (110 were upregulated and 39 were downregulated). In iN cells derived from NF1 patients (NF1-iN cells), there was a change in the expression level of 90 genes with the addition of forskolin, an AC activator. Furthermore, treatment with forskolin dramatically changed the cell morphology, especially that of NF1-iN cells, from flat-form to spherical-form. Current pilot data indicate the potential therapeutic effect of forskolin or AC activators on neuronal growth in NF1 patients. Further translational research is needed to validate the pilot findings for future drug development of ASD

    Alternating spin chains with singlet ground states

    Full text link
    We investigate low-energy properties of the alternating spin chain model composed of spin s1s_1 and s2s_2 with a singlet ground state. After examining the spin-wave spectrum in detail, we map low-energy spin excitations to the O(3) non-linear sigma model in order to take into account quantum fluctuations. Analyzing the topological term in the resulting sigma model, we discuss how the massless or massive excitations are developed, especially according to the topological nature of the alternating spin system.Comment: 9 pages, revtex, to appear in PR

    Development and validation of the 25â item Hikikomori Questionnaire (HQâ 25)

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146508/1/pcn12691_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146508/2/pcn12691.pd

    Alternating-Spin Ladders

    Full text link
    We investigate a two-leg spin ladder system composed of alternating-spin chains with two-different kind of spins. The fixed point properties are discussed by using spin-wave analysis and non-linear sigma model techniques. The model contains various massive phases, reflecting the interplay between the bond-alternation and the spin-alternation.Comment: 6 pages, revtex, to appear in PR

    Suicidal ideation and burnout among psychiatric trainees in Japan

    Get PDF
    AIM: Burnout is a psychological condition that may occur in all workers after being exposed to excessive work-related stresses. We investigated suicidal ideation and burnout among Japanese psychiatric trainees as a part of the Burnout Syndrome Study (BoSS) International.  METHODS: In the Japanese branch, 91 trainees fully completed suicide ideation and behaviour questionnaire (SIBQ) and Maslach Burnout Inventory-General Survey (MBI-GS).  RESULTS: Passive suicidal ideation was reported by 38.5% of Japanese trainees and 22.0% of them had experienced active suicidal ideation. The burnout rate among Japanese subjects was 40.0%. These results were worse compared to the all 1980 trainees who fully completed the main outcome measure in BoSS International, 25.9%, 20.4% and 36.7%, respectively.  CONCLUSIONS: Our results suggest a higher risk of suicide among Japanese residents. Japan has a higher suicide rate than other countries. Early detection of, and appropriate intervention for, suicidal ideation is important in preventing suicide in psychiatry residents

    Near Infrared Imaging Survey of Bok Globules: Density Structure

    Full text link
    On the basis of near-infrared imaging observations, we derived visual extinction (Av) distribution toward ten Bok globules through measurements of both the color excess (E_{H-K}) and the stellar density at J, H, and Ks (star count). Radial column density profiles for each globule were analyzed with the Bonnor-Ebert sphere model. Using the data of our ten globules and four globules in the literature, we investigated the stability of globules on the basis of xi_max, which characterizes the Bonnor-Ebert sphere as well as the stability of the equilibrium state against the gravitational collapse. We found that more than half of starless globules are located near the critical state (xi_max = 6.5 +/- 2). Thus, we suggest that a nearly critical Bonnor-Ebert sphere characterizes the typical density structure of starless globules. Remaining starless globules show clearly unstable states (xi_max > 10). Since unstable equilibrium states are not long maintained, we expect that these globules are on the way to gravitational collapse or that they are stabilized by non-thermal support. It was also found that all the star-forming globules show unstable solutions of xi_max >10, which is consistent with the fact that they have started gravitational collapse. We investigated the evolution of a collapsing gas sphere whose initial condition is a nearly critical Bonnor-Ebert sphere. We found that the column density profiles of the collapsing sphere mimic those of the static Bonnor-Ebert spheres in unstable equilibrium. The collapsing gas sphere resembles marginally unstable Bonnor-Ebert spheres for a long time. We found that the frequency distribution of xi_max for the observed starless globules is consistent with that from model calculations of the collapsing sphere.Comment: Accepted for publication in the Astronomical Journal. 39 pages in preprint format, including 10 figures. The version with higher resolution figures can be obtained at the following site (http://alma.mtk.nao.ac.jp/~kandori/preprint/

    Optimized protocol for the extraction of RNA and DNA from frozen whole blood sample stored in a single EDTA tube

    Get PDF
    Cryopreservation of whole blood is useful for DNA collection, and clinical and basic research. Blood samples in ethylenediaminetetraacetic acid disodium salt (EDTA) tubes stored at − 80 °C are suitable for DNA extraction, but not for high-quality RNA extraction. Herein, a new methodology for high-quality RNA extraction from human blood samples is described. Quickly thawing frozen whole blood on aluminum blocks at room temperature could minimize RNA degradation, and improve RNA yield and quality compared with thawing the samples in a 37 °C water bath. Furthermore, the use of the NucleoSpin RNA kit increased RNA yield by fivefold compared with the PAXgene Blood RNA Kit. Thawing blood samples on aluminum blocks significantly increased the DNA yield by ~ 20% compared with thawing in a 37 °C water bath or on ice. Moreover, by thawing on aluminum blocks and using the NucleoSpin RNA and QIAamp DNA Blood kits, the extraction of RNA and DNA of sufficient quality and quantity was achieved from frozen EDTA whole blood samples that were stored for up to 8.5 years. Thus, extracting RNA from frozen whole blood in EDTA tubes after long-term storage is feasible. These findings may help advance gene expression analysis, as well as biomarker research for various diseases
    corecore