86 research outputs found

    Cosmology in the Einstein-Electroweak Theory and Magnetic Fields

    Full text link
    In the SU(2)_{L} x U(1)_{Y} standard electroweak theory coupled with the Einstein gravity, new topological configurations naturally emerge, if the spatial section of the universe is globally a three-sphere(S^3) with a small radius. The SU(2)_L gauge fields and Higgs fields wrap the space nontrivially, residing at or near a local minimum of the potential. As the universe expands, however, the shape of the potential rapidly changes and the local minimum eventually disappears. The fields then start to roll down towards the absolute minimum. In the absence of the U(1)_Y gauge interaction the resulting space is a homogeneous and isotropic S^3, but the U(1)_Y gauge interaction necessarily induces anisotropy while preserving the homogeneity of the space. Large magnetic fields are generically produced over a substantial period of the rolling-over transition. The magnetic field configuration is characterized by the Hopf map.Comment: 32 pages, 16 figure

    Automatic Bowel Motility Evaluation Technique for Noncontact Sound Recordings

    Get PDF
    Information on bowel motility can be obtained via magnetic resonance imaging (MRI)s and X-ray imaging. However, these approaches require expensive medical instruments and are unsuitable for frequent monitoring. Bowel sounds (BS) can be conveniently obtained using electronic stethoscopes and have recently been employed for the evaluation of bowel motility. More recently, our group proposed a novel method to evaluate bowel motility on the basis of BS acquired using a noncontact microphone. However, the method required manually detecting BS in the sound recordings, and manual segmentation is inconvenient and time consuming. To address this issue, herein, we propose a new method to automatically evaluate bowel motility for noncontact sound recordings. Using simulations for the sound recordings obtained from 20 human participants, we showed that the proposed method achieves an accuracy of approximately 90% in automatic bowel sound detection when acoustic feature power-normalized cepstral coefficients are used as inputs to artificial neural networks. Furthermore, we showed that bowel motility can be evaluated based on the three acoustic features in the time domain extracted by our method: BS per minute, signal-to-noise ratio, and sound-to-sound interval. The proposed method has the potential to contribute towards the development of noncontact evaluation methods for bowel motility

    Visceral fat accumulation influenced blood flow velocity in hypertensive subjects

    Get PDF
    Arterial function measurements are widely used as surrogate markers of cardiovascular disease. However, it is unknown whether non-pathological factor may influence these measurements in particularly blood velocity function. The aim of current study was to investigate the relationship between visceral fat (VF) accumulation and hypertension incidence. The study evaluated the changes of blood velocity waveforms among normotensive and hypertensive subjects. One hundred twenty six individuals were classified into three groups which are lower VF, middle VF and higher VF regarding on their VF level. Resistive index (RI), velocity reflection index (VRI) and vascular elastic recoil index (VEI) were calculated from the 3 minutes assemble average of envelope waveform. The VF accumulation was higher in hypertensive than normotensive subjects. Peak systolic (S1), peak diastolic (D), VRI and VEI modulated significantly (P < 0.05) in higher VF compared to lower VF groups. RI and VRI show significantly different in hypertensive compared to normotensive groups. In conclusion, increased VF influences hypertension incidence and blood velocity regulation

    Effect of the solvent used to prepare the photoactive layer on the performance of inverted bulk heterojunction polymer solar cells

    Get PDF
    The initial performance and subsequent degradation of inverted polymer solar cells [indium-tin oxide/titanium oxide (TiOx)/[6,6]-phenyl C61 butyric acid methyl ester (PCBM): regioregular poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxylenethiophene):poly(4- styrene sulfonic acid)/Au, TiOx cell] are studied by photocurrent-voltage measurements as well as ac impedance spectroscopy (IS) and carrier mobility measurements. The TiOx cells containing a P3HT:PCBM layer prepared from a solution of chlorobenzene (CB) showed a maximum power conversion efficiency (PCE) of 2.23%. In contrast, the TiOx cells containing a P3HT:PCBM layer prepared from a solution of 1,2,3,4- tetrahydronaphthalene (tetralin) containing 2 vol- 1,8-octanedithiol (ODT) exhibited a maximum PCE of 2.92%. However, after exposure to light irradiation for 100 h, the maximum PCE of the tetralin:ODT cell decreased to 68% of its initial value. On the other hand, over 96% of the maximum PCE was maintained in the CB cell after 100 h of irradiation. The IS measurement results suggest that the degradation of the Tetralin: ODT cell was caused by a morphological change of the P3HT:PCBM layer that made efficient photoinduced charge separation difficult. © 2014 The Japan Society of Applied Physics

    Irradiation by a Combination of Different Peak-Wavelength Ultraviolet-Light Emitting Diodes Enhances the Inactivation of Influenza A Viruses

    Get PDF
    Influenza A viruses (IAVs) pose a serious global threat to humans and their livestock. This study aimed to determine the ideal irradiation by ultraviolet-light emitting diodes (UV-LEDs) for IAV disinfection. We irradiated the IAV H1N1 subtype with 4.8 mJ/cm2 UV using eight UV-LEDs [peak wavelengths (WL) = 365, 310, 300, 290, 280, 270, and 260 nm)] or a mercury low pressure (LP)-UV lamp (Peak WL = 254 nm). Inactivation was evaluated by the infection ratio of Madin–Darby canine kidney (MDCK) cells or chicken embryonated eggs. Irradiation by the 260 nm UV-LED showed the highest inactivation among all treatments. Because the irradiation-induced inactivation effects strongly correlated with damage to viral RNA, we calculated the correlation coefficient (RAE) between the irradiant spectrum and absorption of viral RNA. The RAE scores strongly correlated with the inactivation by the UV-LEDs and LP-UV lamp. To increase the RAE score, we combined three different peak WL UV-LEDs (hybrid UV-LED). The hybrid UV-LED (RAE = 86.3) significantly inactivated both H1N1 and H6N2 subtypes to a greater extent than 260 nm (RAE = 68.6) or 270 nm (RAE = 42.2) UV-LEDs. The RAE score is an important factor for increasing the virucidal effects of UV-LED irradiation

    紫外線発光ダイオード照射は宿主細胞内でのウイルスRNAの複製と転写を抑制することでA型インフルエンザウイルスを不活化する

    Get PDF
    Influenza A viruses (IAVs) pose a serious global threat to humans and their livestock, especially poultry and pigs. This study aimed to investigate how to inactivate IAVs by using different ultraviolet-light-emitting diodes (UV-LEDs). We developed sterilization equipment with light-emitting diodes (LEDs) those peak wavelengths were 365 nm (UVA-LED), 310 nm (UVB-LED), and 280 nm (UVC-LED). These UV-LED irradiations decreased dose fluence-dependent plaque-forming units of IAV H1N1 subtype (A/Puerto Rico/8/1934) infected Madin-Darby canine kidney (MDCK) cells, but the inactivation efficiency of UVA-LED was significantly lower than UVB- and UVC-LED. UV-LED irradiations did not alter hemagglutination titer, but decreased accumulation of intracellular total viral RNA in infected MDCK cells was observed. Additionally, UV-LED irradiations suppressed the accumulation of intracellular mRNA (messenger RNA), vRNA (viral RNA), and cRNA (complementary RNA), as measured by strand-specific RT-PCR. These results suggest that UV-LEDs inhibit host cell replication and transcription of viral RNA. Both UVB- and UVC-LED irradiation decreased focus-forming unit (FFU) of H5N1 subtype (A/Crow/Kyoto/53/2004), a highly pathogenic avian IAV (HPAI), in infected MDCK cells, and the amount of FFU were lower than the H1N1 subtype. From these results, it appears that IAVs may have different sensitivity among the subtypes, and UVB- and UVC-LED may be suitable for HPAI virus inactivation

    Identification of Genes Associated with Sensitivity to Ultraviolet A (UVA) Irradiation by Transposon Mutagenesis of Vibrio parahaemolyticus

    Get PDF
    Ultraviolet (UV) irradiation is used to disinfect water and food and can be classified as UVA (detected at wavelengths 320–400 nm), UVB (280–320 nm), and UVC (<280 nm). We developed a method for UVA sterilization of equipment with a UVA-light-emitting diode (LED); however, a high rate of fluence was needed to promote pathogen inactivation. The aim of this study was to identify genes associated with UVA sensitivity with the goal of improving UVA-LED-mediated bactericidal activity. We constructed a transposon-mutant library of Vibrio parahaemolyticus and selected six mutants with high sensitivity to UVA irradiation. Genes associated with this phenotype include F-type H+-transporting ATPases (atp), as well as those involved in general secretion (gsp), and ubiquinone and terpenoid-quinone biosynthesis (ubi). Gene complementation resulted in decreased sensitivity to UVA-LED. The atp mutants had lower intracellular adenosine triphosphate (ATP) concentrations than the wild-type treatment, with 20 mM L-serine resulting in elevated ATP concentrations and decreased sensitivity to UVA-LED. The gsp mutants exhibited high levels of extracellular protein transport and the ubi mutants exhibited significantly different intracellular concentrations of ubiquinone-8. Taken together, our results suggest that the protein products of the atp, gsp, and ubi genes may regulate sensitivity to UVA irradiation

    青色発光ダイオードはオプシン3を介し大腸癌細胞のオートファジーを誘導する

    Get PDF
    Light emitting-diodes (LED) have various effects on living organisms and recent studies have shown the efficacy of visible light irradiation from LED for anticancer therapies. However, the mechanism of LED’s effects on cancer cells remains unclear. The aim of the present study was to investigate the effects of LED on colon cancer cell lines and the role of photoreceptor Opsin 3 (Opn3) on LED irradiation in vitro. Human colon cancer cells (HT-29 or HCT-116) were seeded onto laboratory dishes and irradiated with 465-nm LED at 30 mW/cm2 for 30 minutes. Cell Counting Kit-8 was used to measure cell viability, and apoptosis and caspase 3/8 expression were evaluated by AnnexinV/PI and reverse transcription-polymerase chain reaction (RT-PCR), respectively. Autophagy and expression of LC-3 and beclin-1 were also evaluated by autophagy assays, RT-PCR and Western blotting. We further tested Opn3 knockdown by Opn3 siRNA and the Gi/o G-protein inhibitor NF023 in these assays. Viability of HT-29 and HCT-116 cells was lower in 465-nm LED-irradiated cultures than in control cultures. LC-3 and beclin-1 expressions were significantly higher in LED-irradiated cultures, and autophagosomes were detected in irradiated cells. The reductive effect of cancer cell viability following blue LED irradiation was reversed by Opn3 knockdown or NF023 treatment. Furthermore, increased LC-3 and beclin-1 expression that resulted from blue LED irradiation was suppressed by Opn3 knockdown or NF023 treatment. Blue LED irradiation suppressed the growth of colon cancer cells and Opn3 may play an important role as a photoreceptor

    Inactivation of ESBL-E. coli

    Get PDF
    The prevalence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli is increasing rapidly and spreading worldwide, particularly in Asia, compared to other regions. In the last ten years, in our hospital, in particular, there has been a < 30% increase. To prevent the spread of ESBL in hospitals and the community, the ultraviolet (UV) A-light-emitting diode (LED) irradiation device was used to inactivate ESBL-E. coli in human livestock and the environment. ESBL-E. coli and E. coli bacterial samples were collected from patients at Tokushima University Hospital (Tokushima City, Japan). The UVA-LED irradiation system had 365 nm single wavelength, and the current of the circuit was set to 0.23 or 0.50 A consistently. Results demonstrated that UVA-LED was useful for the inactivation of ESBL-E. coli and E. coli. The minimum energy dosage required to inactivate ESBL-E. coli and E. coli was 40.76 J/cm2 (45 min) in the first type of UVA-LED and 38.85 J/cm2 (5 min) in the second type. There were no significant differences between ESBL-E. coli and E. coli. The inactivation of ESBL-E. coli was dependent on energy. These findings suggest that UVA-LED with 365 nm single wavelength could be useful for surface decontamination in healthcare facilities

    Effectiveness of visible and ultraviolet light emitting diodes for inactivation of Staphylococcus aureus, Pseudomonas aeruginosa,and Escherichia coli: a comparative study

    Get PDF
    The rapid use of ultraviolet light emitting diodes (UV-LEDs) in various disinfection applications is growing tremendously due to their advantages unachievable using UV lamps. In this study, a comparison of standard LED at 460 nm wavelength and UVA LED at 385 nm was conducted to determine their effectiveness in disinfection of frequently isolated pathogens in hospitals (Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli). Determination of disinfection efficiency was carried out by measuring inhibition zone. Effects of varied exposure time on the inactivation of pathogenic microorganisms was studied. The results demonstrated that LED does not have germicidal activities. The highest inactivation for UVA LED was achieved for Pseudomonas aeruginosa. Linear relationship was found between exposure time and log reduction. This study showed that UVA LEDs can effectively inactivate significantly higher number of microorganisms hence can be used in disinfection of various applications
    corecore