259 research outputs found

    Quantum network coding for quantum repeaters

    Full text link
    This paper considers quantum network coding, which is a recent technique that enables quantum information to be sent on complex networks at higher rates than by using straightforward routing strategies. Kobayashi et al. have recently showed the potential of this technique by demonstrating how any classical network coding protocol gives rise to a quantum network coding protocol. They nevertheless primarily focused on an abstract model, in which quantum resource such as quantum registers can be freely introduced at each node. In this work, we present a protocol for quantum network coding under weaker (and more practical) assumptions: our new protocol works even for quantum networks where adjacent nodes initially share one EPR-pair but cannot add any quantum registers or send any quantum information. A typically example of networks satisfying this assumption is {\emph{quantum repeater networks}}, which are promising candidates for the implementation of large scale quantum networks. Our results thus show, for the first time, that quantum network coding techniques can increase the transmission rate in such quantum networks as well.Comment: 9 pages, 11figure

    Estimation of Shallow Water Flow Based on Kalman Filter FEM

    Get PDF
    In this chapter, we present numerical examples of an estimation of shallow water flow based on Kalman filter finite element method (Kalman filter FEM). Shallow water equations are adopted as the governing equations. The Galerkin method, using triangular elements, is employed to discretize the governing equation in space, and the selective lumping method is used to discretize time. We describe the influence on the numerical results of setting the observation points

    Chronic irradiation with low-dose-rate ¹³⁷Cs-γ rays inhibits NGF-induced neurite extension of PC12 cells via Ca²⁺/calmodulin-dependent kinase II activation

    Get PDF
    Chronic irradiation with low-dose-rate ¹³⁷Cs-γ rays inhibits the differentiation of human neural progenitor cells and influences the expression of proteins associated with several cellular functions. We aimed to determine whether such chronic irradiation influences the expression of proteins associated with PC12 cells. Chronic irradiation at 0.027 mGy/min resulted in inhibition of NGF-induced neurite extension. Furthermore, irradiation enhanced the nerve growth factor (NGF)-induced increase in the phosphorylation of extracellular signal–regulated kinase (ERK), but did not affect the phosphorylation of NGF receptors, suggesting that irradiation influences pathways unassociated with the activation of ERK. We then examined whether irradiation influenced the Akt−Rac1 pathway, which is unaffected by ERK activation. Chronic irradiation also enhanced the NGF-induced increase in Akt phosphorylation, but markedly inhibited the NGF-induced increase in Rac1 activity that is associated with neurite extension. These results suggest that the inhibitory effect of irradiation on neurite extension influences pathways unassociated with Akt activation. As Ca²⁺ /calmodulin-dependent kinase II (CaMKII) is known to inhibit the NGF-induced neurite extension in PC12 cells, independent of ERK and Akt activation, we next examined the effects of irradiation on CaMKII activation. Chronic irradiation induced CaMKII activation, while application of KN-62 (a specific inhibitor of CaMKII), attenuated increases in CaMKII activation and recovered neurite extension and NGF-induced increases in Rac1 activity that was inhibited by irradiation. Our results suggest that chronic irradiation with low-dose-rate γ-rays inhibits Rac1 activity via CaMKII activation, thereby inhibiting NGF-induced neurite extension

    薬剤性過敏症症候群(DIHS)の皮疹部においてCD3陽性T細胞数に対するFoxP3陽性制御性T細胞数の割合は増加している

    Get PDF
    博士(医学)・甲第604号・平成25年11月27日© 2014 British Association of Dermatologists / The definitive version is available at http://onlinelibrary.wiley.com

    NMR verification of Dirac nodal lines in a single-component molecular conductor

    Full text link
    The Dirac nodal line (DNL) is a novel form of massless Dirac fermions that reside along lines in momentum space. Here, we verify genuine DNLs in the molecular material, [Ni(dmdt)2_2], with the combined NMR experiments and numerical simulations. The NMR spectral shift and spin-lattice relaxation rate divided by temperature, 1/T1T1/T_1T, decrease linearly and quadratically with temperature, respectively, and become constant at low temperatures, consistent with slightly dispersive DNLs with small Fermi pockets. Comparison of these results with model simulations of DNLs reveals the suppression of the Fermi velocity and the enhancement of antiferromagnetic fluctuations due to electron correlation as well as the influence of the Landau quantization. The present study offers a demonstration to identify the DNL and evaluate the correlation effect with NMR.Comment: 6 pages, 3 figure

    Dark Rearing Promotes the Recovery of Visual Cortical Responses but Not the Morphology of Geniculocortical Axons in Amblyopic Cat

    Get PDF
    Monocular deprivation (MD) of vision during early postnatal life induces amblyopia, and most neurons in the primary visual cortex lose their responses to the closed eye. Anatomically, the somata of neurons in the closed-eye recipient layer of the lateral geniculate nucleus (LGN) shrink and their axons projecting to the visual cortex retract. Although it has been difficult to restore visual acuity after maturation, recent studies in rodents and cats showed that a period of exposure to complete darkness could promote recovery from amblyopia induced by prior MD. However, in cats, which have an organization of central visual pathways similar to humans, the effect of dark rearing only improves monocular vision and does not restore binocular depth perception. To determine whether dark rearing can completely restore the visual pathway, we examined its effect on the three major concomitants of MD in individual visual neurons, eye preference of visual cortical neurons and soma size and axon morphology of LGN neurons. Dark rearing improved the recovery of visual cortical responses to the closed eye compared with the recovery under binocular conditions. However, geniculocortical axons serving the closed eye remained retracted after dark rearing, whereas reopening the closed eye restored the soma size of LGN neurons. These results indicate that dark rearing incompletely restores the visual pathway, and thus exerts a limited restorative effect on visual function
    corecore