23,066 research outputs found

    Pre-K-Edge Structure on Anomalous X-Ray Scattering in LaMnO3

    Full text link
    We study the pre-K-edge structure of the resonant X-ray scattering for forbidden reflections (anomalous scattering) in LaMnO3, using the band calculation based on the local density approximation. We find a two-peak structure with an intensity approximately 1/100 of that of the main peak. This originates from a mixing of 4p states of Mn to 3d states of neighboring Mn sites. The effect is enhanced by an interference with the tail of the main peak. The effect of the quadrupole transition is found to be one order of magnitude smaller than that of the dipole transition, modifying slightly the azimuthal-angle dependence.Comment: 4 pages, 5 figures, submitted to J. Phys. Soc. Jp

    Thermoelectric transport of perfectly conducting channels in two- and three-dimensional topological insulators

    Full text link
    Topological insulators have gapless edge/surface states with novel transport properties. Among these, there are two classes of perfectly conducting channels which are free from backscattering: the edge states of two-dimensional topological insulators and the one-dimensional states localized on dislocations of certain three-dimensional topological insulators. We show how these novel states affect thermoelectric properties of the systems and discuss possibilities to improve the thermoelectric figure of merit using these materials with perfectly conducting channels.Comment: 10 pages, 6 figures, proceedings for The 19th International Conference on the Application of High Magnetic Fields in Semiconductor Physics and Nanotechnology (HMF-19

    Single-dopant resonance in a single-electron transistor

    Full text link
    Single dopants in semiconductor nanostructures have been studied in great details recently as they are good candidates for quantum bits, provided they are coupled to a detector. Here we report coupling of a single As donor atom to a single-electron transistor (SET) in a silicon nanowire field-effect transistor. Both capacitive and tunnel coupling are achieved, the latter resulting in a dramatic increase of the conductance through the SET, by up to one order of magnitude. The experimental results are well explained by the rate equations theory developed in parallel with the experiment.Comment: 16 pages, 8 figure

    RESONANT BANDWIDTH ESTIMATION OF VOWELS USING CLUSTERED-LINE SPECTRUM MODELING FOR PRESSURE SPEECH WAVEFORMS

    Get PDF

    Mechanism of carrier-induced ferromagnetism in magnetic semiconductors

    Full text link
    Taking into account both random impurity distribution and thermal fluctuations of localized spins, we have performed a model calculation for the carrier (hole) state in Ga1−x_{1-x}Mnx_xAs by using the coherent potential approximation (CPA). The result reveals that a {\it p}-hole in the band tail of Ga1−x_{1-x}Mnx_xAs is not like a free carrier but is rather virtually bounded to impurity sites. The carrier spin strongly couples to the localized {\it d} spins on Mn ions. The hopping of the carrier among Mn sites causes the ferromagnetic ordering of the localized spins through the double-exchange mechanism. The Curie temperature obtained by using conventional parameters agrees well with the experimental result.Comment: 7 pages, 4 figure

    Magnetic susceptibility and low-temperature specific-heat of integrable 1-D Hubbard model under open-boundary conditions

    Full text link
    The magnetic susceptibility and the low-temperature specific heat of the 1-dimensional Hubbard model under the integrable open-boundary conditions are discussed through the Bethe ansatz with the string hypothesis. The contributions of the boundary fields to both the susceptibility and the specific heat are obtained, and their exact expressions are analytically derived.Comment: 14 pages, Latex, No figures, to appear in J. Phys. A: Gen. & Mat

    Critical properties and R\'enyi entropies of the spin-3/2 XXZ chain

    Full text link
    We discuss entanglement and critical properties of the spin-3/2 XXZ chain in its entire gapless region. Employing density-matrix renormalization group calculations combined with different methods based on level spectroscopy, correlation functions and entanglement entropies, we determine the sound velocity and the Luttinger parameter of the model as a function of the anisotropy parameter. Then, we focus on entanglement properties by systematically studying the behavior of R\'enyi entropies under both open and periodic boundary conditions, providing further evidence of recent findings about entanglement entropies of excited states in conformal field theory.Comment: 8 pages, 10 figures; small text revisions and a new figure. Accepted for publication in Phys. Rev.

    Resonant X-Ray Scattering from CeB6_{6}

    Full text link
    We calculate the resonant x-ray scattering (RXS) spectra near the Ce LIIIL_{\rm III} absorption edge in CeB6_6, on the basis of a microscopic model that the 4f4f states of Ce are atomic while the 5d5d states form an energy band with a reasonable density of states. In the initial state, we employ an effective Hamiltonian of Shiina {\it et al}. in the antiferro-quadrupole (AFQ) ordering phase, while we construct the wave function consistent with the neutron scattering experiment in the magnetic ground state. In the intermediate state, we take full account of the intra-atomic Coulomb interaction. Without assuming any lattice distortion, we obtain sufficient RXS intensities on the AFQ superlattice spot. We obtain the spectral shape, the temperature and magnetic field dependences in good agreement with the experiment, thus demonstrating the mechanism that the intensity is brought about by the modulation of 5d5d states through the anisotropic term of the 5d5d-4f4f Coulomb interaction. In the magnetic ground state, a small pre-edge peak is found by the E2E_2 process. On the magnetic superlattice spot, we get a finite but considerably small intensity. The magnetic form factor is briefly discussed.Comment: Latex, 10 pages, 12 figures. To be published in J. Phys. Soc. Jpn., Vol.71, No. 7 (2002

    Nonlinear Integral Equations for Thermodynamics of the U_{q}(\hat{sl(r+1)}) Perk-Schultz Model

    Full text link
    We propose a system of nonlinear integral equations (NLIE) which describes the thermodynamics of the U_{q}(\hat{sl(r+1)}) Perk-Schultz model. These NLIE correspond to a trigonometric analogue of our previous result (cond-mat/0212280), and contain only r unknown functions. In particular, they reduce to Takahashi's NLIE for the XXZ spin chain (cond-mat/0010486) if r=1. We also calculate the high temperature expansion of the free energy. In particular for r=1 case, we have succeeded to derive the coefficients of order O((\frac{J}{T})^{99}).Comment: 19 pages, 4 figures, only the Mathematica file for the high temperature expansion is replaced, to appear in J.Phys.Soc.Jpn.Vol.74 No.3 (2005

    First-order transition between a small-gap semiconductor and a ferromagnetic metal in the isoelectronic alloys FeSi1−x_{1-x}Gex_x

    Full text link
    The contrasting groundstates of isoelectronic and isostructural FeSi and FeGe can be explained within an extended local density approximation scheme (LDA+U) by an appropriate choice of the onsite Coulomb repulsion, UU on the Fe-sites. A minimal two-band model with interband interactions allows us to obtain a phase diagram for the alloys FeSi1−x_{1-x}Gex_{x}. Treating the model in a mean field approximation, gives a first order transition between a small-gap semiconductor and a ferromagnetic metal as a function of magnetic field, temperature, and concentration, xx. Unusually the transition from metal to insulator is driven by broadening, not narrowing, the bands and it is the metallic state that shows magnetic order.Comment: 4 pages, 5 figure
    • …
    corecore