1,058 research outputs found
Non-dissipative thermal transport in the massive regimes of the XXZ chain
We present exact results on the thermal conductivity of the one-dimensional
spin-1/2 XXZ model in the massive antiferromagnetic and ferromagnetic regimes.
The thermal Drude weight is calculated by a lattice path integral formulation.
Numerical results for wide ranges of temperature and anisotropy as well as
analytical results in the low and high temperature limits are presented. At
finite temperature, the thermal Drude weight is finite and hence there is
non-dissipative thermal transport even in the massive regime. At low
temperature, the thermal Drude weight behaves as where is the one-spinon (respectively
one-magnon) excitation energy for the antiferromagnetic (respectively
ferromagnetic) regime.Comment: 16 page
Quantum Sine(h)-Gordon Model and Classical Integrable Equations
We study a family of classical solutions of modified sinh-Gordon equation,
$\partial_z\partial_{{\bar z}} \eta-\re^{2\eta}+p(z)\,p({\bar z})\
\re^{-2\eta}=0p(z)=z^{2\alpha}-s^{2\alpha}Q(\alpha>0)(\alpha<-1)$ models.Comment: 35 pages, 3 figure
Analysis of cell proliferation and tissue remodelling uncovers a KLF4 activity score associated with poor prognosis in colorectal cancer
Human cancers can be classified based on gene signatures quantifying the degree of cell proliferation and tissue remodelling (PR). However, the specific factors that drive the increased tissue remodelling in tumours are not fully understood. Here we address this question using colorectal cancer as a case study. We reanalysed a reported cohort of colorectal cancer patients. The patients were stratified based on gene signatures of cell proliferation and tissue remodelling. Putative transcription factors activity was inferred using gene expression profiles and annotations of transcription factor targets as input. We demonstrate that the PR classification performs better than the currently adopted consensus molecular subtyping (CMS). Although CMS classification differentiates patients with a mesenchymal signature, it cannot distinguish the remaining patients based on survival. We demonstrate that the missing factor is cell proliferation, which is indicative of good prognosis. We also uncover a KLF4 transcription factor activity score associated with the tissue remodelling gene signature. We further show that the KLF4 activity score is significantly higher in colorectal tumours with predicted infiltration of cells from the myeloid lineage. The KLF4 activity score is associated with tissue remodelling, myeloid cell infiltration and poor prognosis in colorectal cancer
The effect of acetaminophen (four grams a day for three consecutive days) on hepatic tests in alcoholic patients – a multicenter randomized study
Background: Hepatic failure has been associated with reported therapeutic use of acetaminophen by alcoholic patients. The highest risk period for alcoholic patients is immediately after
discontinuation of alcohol intake. This period exhibits the largest increase in CYP2E1 induction and lowest glutathione levels. Our hypothesis was that common liver tests would be unaffected by
administration of the maximum recommended daily dosage of acetaminophen for 3 consecutive days to newly-abstinent alcoholic subjects.
Methods: Adult alcoholic subjects entering two alcohol detoxification centers were enrolled in a prospective double-blind, randomized, placebo-controlled trial. Subjects were randomized to
acetaminophen, 4 g/day, or placebo for 3 consecutive days. The study had 95% probability of detecting a 15 IU/L difference in serum ALT.
Results: A total of 443 subjects were enrolled: 308 (258 completed) received acetaminophen and 135 subjects (114 completed) received placebo. Study groups did not differ in demographics,
alcohol consumption, nutritional status or baseline laboratory assessments. The peak mean ALT activity was 57 [plus or minus] 45 IU/L and 55 [plus or minus] 48 IU/L in the acetaminophen and placebo groups, respectively. Subgroup analyses for subjects presenting with an elevated ALT, subjects fulfilling a diagnosis of
alcoholic hepatitis and subjects attaining a peak ALT greater than 200 IU/L showed no statistical difference between the acetaminophen and control groups. The one participant developing an increased international normalized ratio was in the placebo group.
Conclusion: Alcoholic patients treated with the maximum recommended daily dose of acetaminophen for 3 consecutive days did not develop increases in serum transaminase or other measures of liver injury. Treatment of pain or fever for 3 days with acetaminophen appears safe in
newly-abstinent alcoholic patients, such as those presenting for acute medical care.Funding for this study was provided by McNeil Consumer Healthcare to the Denver Health Authority, Denver, Colorado
Acquisition of pneumococci specific effector and regulatory Cd4+ T cells localising within human upper respiratory-tract mucosal lymphoid tissue
The upper respiratory tract mucosa is the location for commensal Streptococcus (S.) pneumoniae colonization and therefore represents a major site of contact between host and bacteria. The CD4(+) T cell response to pneumococcus is increasingly recognised as an important mediator of immunity that protects against invasive disease, with data suggesting a critical role for Th17 cells in mucosal clearance. By assessing CD4 T cell proliferative responses we demonstrate age-related sequestration of Th1 and Th17 CD4(+) T cells reactive to pneumococcal protein antigens within mucosal lymphoid tissue. CD25(hi) T cell depletion and utilisation of pneumococcal specific MHCII tetramers revealed the presence of antigen specific Tregs that utilised CTLA-4 and PDL-1 surface molecules to suppress these responses. The balance between mucosal effector and regulatory CD4(+) T cell immunity is likely to be critical to pneumococcal commensalism and the prevention of unwanted pathology associated with carriage. However, if dysregulated, such responses may render the host more susceptible to invasive pneumococcal infection and adversely affect the successful implementation of both polysaccharide-conjugate and novel protein-based pneumococcal vaccines
CMB Telescopes and Optical Systems
The cosmic microwave background radiation (CMB) is now firmly established as
a fundamental and essential probe of the geometry, constituents, and birth of
the Universe. The CMB is a potent observable because it can be measured with
precision and accuracy. Just as importantly, theoretical models of the Universe
can predict the characteristics of the CMB to high accuracy, and those
predictions can be directly compared to observations. There are multiple
aspects associated with making a precise measurement. In this review, we focus
on optical components for the instrumentation used to measure the CMB
polarization and temperature anisotropy. We begin with an overview of general
considerations for CMB observations and discuss common concepts used in the
community. We next consider a variety of alternatives available for a designer
of a CMB telescope. Our discussion is guided by the ground and balloon-based
instruments that have been implemented over the years. In the same vein, we
compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the
South Pole Telescope (SPT). CMB interferometers are presented briefly. We
conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and
Planck, to demonstrate a remarkable evolution in design, sensitivity,
resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1:
Telescopes and Instrumentatio
Phosphorylation and Activation of the Plasma Membrane Na+/H+ Exchanger (NHE1) during Osmotic Cell Shrinkage
The Na+/H+ Exchanger isoform 1 (NHE1) is a highly versatile, broadly distributed and precisely controlled transport protein that mediates volume and pH regulation in most cell types. NHE1 phosphorylation contributes to Na+/H+ exchange activity in response to phorbol esters, growth factors or protein phosphatase inhibitors, but has not been observed during activation by osmotic cell shrinkage (OCS). We examined the role of NHE1 phosphorylation during activation by OCS, using an ideal model system, the Amphiuma tridactylum red blood cell (atRBC). Na+/H+ exchange in atRBCs is mediated by an NHE1 homolog (atNHE1) that is 79% identical to human NHE1 at the amino acid level. NHE1 activity in atRBCs is exceptionally robust in that transport activity can increase more than 2 orders of magnitude from rest to full activation. Michaelis-Menten transport kinetics indicates that either OCS or treatment with the phosphatase inhibitor calyculin-A (CLA) increase Na+ transport capacity without affecting transport affinity (Km = 44 mM) in atRBCs. CLA and OCS act non-additively to activate atNHE1, indicating convergent, phosphorylation-dependent signaling in atNHE1 activation. In situ 32P labeling and immunoprecipitation demonstrates that the net phosphorylation of atNHE1 is increased 4-fold during OCS coinciding with a more than 2-order increase in Na+ transport activity. This is the first reported evidence of increased NHE1 phosphorylation during OCS in any vertebrate cell type. Finally, liquid chromatography and mass spectrometry (LC-MS/MS) analysis of atNHE1 immunoprecipitated from atRBC membranes reveals 9 phosphorylated serine/threonine residues, suggesting that activation of atNHE1 involves multiple phosphorylation and/or dephosphorylation events
- …