260 research outputs found
First-principles study on the origin of large thermopower in hole-doped LaRhO3 and CuRhO2
Based on first-principles calculations, we study the origin of the large
thermopower in Ni-doped LaRhO3 and Mg-doped CuRhO2. We calculate the band
structure and construct the maximally localized Wannier functions from which a
tight binding Hamiltonian is obtained. The Seebeck coefficient is calculated
within the Boltzmann's equation approach using this effective Hamiltonian. For
LaRhO3, we find that the Seebeck coefficient remains nearly constant within a
large hole concentration range, which is consistent with the experimental
observation. For CuRhO2, the overall temperature dependence of the calculated
Seebeck coefficient is in excellent agreement with the experiment. The origin
of the large thermopower is discussed.Comment: 7 pages, to be published J. Phys.: Cond. Matt., Proc. QSD 200
Early urinary catheter removal in stroke
Objective : The aim of the present study was to identify factors related to the success of trial without catheter (TWOC) in patients with stroke and to examine the effect of the timing of urinary catheter removal on the course of stroke. Methods : Patients who were admitted to the Stroke Care Unit of our institution between March 2018 and October 2021 were included. To identify factors related to success of TWOC, a multivariate analysis was performed on the patient’s condition at admission and catheter indwelling time. The patients were divided into two groups by the timing of catheter removal, and we assessed the relationship between the timing of catheter removal successful TWOC and recovery of physical function. Results : A total of 118 patients were included. The presence of comorbidities and scores of severity and function at admission were not predictors of successful voiding. The time to achieve voiding sussess was significantly shorter in the early catheter removal group than in the later group (p < 0.005). Interestingly, the early group also showed better improvements in physical function. Conclusion : Early removal of catheters may lead to early recovery of bladder function, improvement of physical function, and lower risk of complications in patients with stroke
Immune State Conversion of the Mesenteric Lymph Node in a Mouse Breast Cancer Model
Secondary lymphoid tissues, such as the spleen and lymph nodes (LNs), contribute to breast cancer development and metastasis in both anti- and pro-tumoral directions. Although secondary lymphoid tissues have been extensively studied, very little is known about the immune conversion in mesenteric LNs (mLNs) during breast cancer development. Here, we demonstrate inflammatory immune conversion of mLNs in a metastatic 4T1 breast cancer model. Splenic T cells were significantly decreased and continuously suppressed IFN-gamma production during tumor development, while myeloid-derived suppressor cells (MDSCs) were dramatically enriched. However, T cell numbers in the mLN did not decrease, and the MDSCs only moderately increased. T cells in the mLN exhibited conversion from a pro-inflammatory state with high IFN-gamma expression to an anti-inflammatory state with high expression of IL-4 and IL-10 in early- to late-stages of breast cancer development. Interestingly, increased migration of CD103(+)CD11b(+) dendritic cells (DCs) into the mLN, along with increased (1 -> 3)-beta-D-glucan levels in serum, was observed even in late-stage breast cancer. This suggests that CD103(+)CD11b(+) DCs could prime cancer-reactive T cells. Together, the data indicate that the mLN is an important lymphoid tissue contributing to breast cancer development
A three-component monooxygenase from Rhodococcus wratislaviensis may expand industrial applications of bacterial enzymes
地球外有機化合物に対する微生物代謝の解明から全く新規な酵素系を発見 --生命分子進化の理解や産業応用に期待--. 京都大学プレスリリース. 2021-01-20.The high-valent iron-oxo species formed in the non-heme diiron enzymes have high oxidative reactivity and catalyze difficult chemical reactions. Although the hydroxylation of inert methyl groups is an industrially promising reaction, utilizing non-heme diiron enzymes as such a biocatalyst has been difficult. Here we show a three-component monooxygenase system for the selective terminal hydroxylation of α-aminoisobutyric acid (Aib) into α-methyl-D-serine. It consists of the hydroxylase component, AibH1H2, and the electron transfer component. Aib hydroxylation is the initial step of Aib catabolism in Rhodococcus wratislaviensis C31-06, which has been fully elucidated through a proteome analysis. The crystal structure analysis revealed that AibH1H2 forms a heterotetramer of two amidohydrolase superfamily proteins, of which AibHm2 is a non-heme diiron protein and functions as a catalytic subunit. The Aib monooxygenase was demonstrated to be a promising biocatalyst that is suitable for bioprocesses in which the inert C–H bond in methyl groups need to be activated
Electronic properties of alkali-metal loaded zeolites -- a "supercrystal" Mott insulator
First-principles band calculations are performed for the first time for an
open-structured zeolite (LTA) with guest atoms (potassium) introduced in their
cages. A surprisingly simple band structure emerges, which indicates that this
system may be regarded as a "supercrystal", where each cluster of guest atoms
with diameter 10\AA acts as a "superatom" with well-defined - and
-like orbitals, which in turn form the bands around the Fermi energy. The
calculated Coulomb and exchange energies for these states turn out to be in the
strongly-correlated regime. With the dynamical mean-field theory we show the
system should be on the Mott-insulator side, and, on a magnetic phase diagram
for degenerate-orbital systems, around the ferromagnetic regime, in accord with
experimental results. We envisage this class of systems can provide a new
avenue for materials design.Comment: 4 pages, 4 figure
- …