76 research outputs found

    Scale effect of slip boundary condition at solid–liquid interface

    Get PDF
    Rapid advances in microelectromechanical systems have stimulated the development of compact devices, which require effective cooling technologies (e.g., microchannel cooling). However, the inconsistencies between experimental and classical theoretical predictions for the liquid flow in microchannel remain unclarified. Given the larger surface/volume ratio of microchannel, the surface effects increase as channel scale decreases. Here we show the scale effect of the boundary condition at the solid–liquid interface on single-phase convective heat transfer characteristics in microchannels. We demonstrate that the deviation from classical theory with a reduction in hydraulic diameters is due to the breakdown of the continuum solid–liquid boundary condition. The forced convective heat transfer characteristics of single-phase laminar flow in a parallel-plate microchannel are investigated. Using the theoretical Poiseuille and Nusselt numbers derived under the slip boundary condition at the solid–liquid interface, we estimate the slip length and thermal slip length at the interface

    Review Engagement of Interim Financial Information in Japan

    Get PDF

    The Characteristics in Selection of Quarterly Review Procedures

    Get PDF
    宮本勝浩教授 退職記念

    Pathogenic Roles of Cardiac Fibroblasts in Pediatric Dilated Cardiomyopathy

    Get PDF
    BACKGROUND: Dilated cardiomyopathy (DCM) is a major cause of heart failure in children. Despite intensive genetic analyses, pathogenic gene variants have not been identified in most patients with DCM, which suggests that cardiomyocytes are not solely responsible for DCM. Cardiac fibroblasts (CFs) are the most abundant cell type in the heart. They have several roles in maintaining cardiac function; however, the pathological role of CFs in DCM remains unknown. METHODS AND RESULTS: Four primary cultured CF cell lines were established from pediatric patients with DCM and compared with 3 CF lines from healthy controls. There were no significant differences in cellular proliferation, adhesion, migration, ap-optosis, or myofibroblast activation between DCM CFs compared with healthy CFs. Atomic force microscopy revealed that cellular stiffness, fluidity, and viscosity were not significantly changed in DCM CFs. However, when DCM CFs were cocultured with healthy cardiomyocytes, they deteriorated the contractile and diastolic functions of cardiomyocytes. RNA sequencing revealed markedly different comprehensive gene expression profiles in DCM CFs compared with healthy CFs. Several hu-moral factors and the extracellular matrix were significantly upregulated or downregulated in DCM CFs. The pathway analysis revealed that extracellular matrix receptor interactions, focal adhesion signaling, Hippo signaling, and transforming growth factor-β signaling pathways were significantly affected in DCM CFs. In contrast, single-cell RNA sequencing revealed that there was no specific subpopulation in the DCM CFs that contributed to the alterations in gene expression. CONCLUSIONS: Although cellular physiological behavior was not altered in DCM CFs, they deteriorated the contractile and diastolic functions of healthy cardiomyocytes through humoral factors and direct cell–cell contact.Tsuru H., Yoshihara C., Suginobe H., et al. Pathogenic Roles of Cardiac Fibroblasts in Pediatric Dilated Cardiomyopathy. Journal of the American Heart Association 12, e029676 (2023); https://doi.org/10.1161/JAHA.123.029676

    Review Engagement of Interim Financial Information in Japan

    No full text

    Fission yeast Wee1 is required for stable kinetochore-microtubule attachment

    Get PDF
    Wee1 is a cell cycle regulator that phosphorylates Cdk1/Cdc2 and inhibits G2/M transition. Loss of Wee1 in fission yeast results in an early onset of mitosis. Interestingly, we found that cells lacking Wee1 require the functional spindle checkpoint for their viability. Genetic analysis indicated that the requirement is not attributable to the early onset of mitosis. Live-cell imaging revealed that some kinetochores are not attached or bioriented in the wee1 mutant. Furthermore, Mad2, a component of the spindle checkpoint known to recognize unattached kinetochores, accumulates in the vicinity of the spindle, representing activation of the spindle checkpoint in the mutant. It appears that the wee1 mutant cannot maintain stable kinetochore-microtubule attachment, and relies on the delay imposed by the spindle checkpoint for establishing biorientation of kinetochores. This study revealed a role of Wee1 in ensuring accurate segregation of chromosomes during mitosis, and thus provided a basis for a new principle of cancer treatment with Wee1 inhibitors
    corecore