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Wee1 is a cell cycle regulator that phosphorylates Cdk1/Cdc2 and inhibits
G2/M transition. Loss ofWee1 in fission yeast results in an early onset of mito-
sis. Interestingly, we found that cells lacking Wee1 require the functional
spindle checkpoint for their viability. Genetic analysis indicated that the
requirement is not attributable to the early onset of mitosis. Live-cell imaging
revealed that some kinetochores are not attached or bioriented in the
wee1 mutant. Furthermore, Mad2, a component of the spindle checkpoint
known to recognize unattached kinetochores, accumulates in the vicinity of
the spindle, representing activation of the spindle checkpoint in the mutant.
It appears that the wee1 mutant cannot maintain stable kinetochore-microtu-
bule attachment, and relies on the delay imposed by the spindle checkpoint
for establishing biorientation of kinetochores. This study revealed a role of
Wee1 in ensuring accurate segregation of chromosomes during mitosis, and
thus provided a basis for a new principle of cancer treatment with
Wee1 inhibitors.
1. Introduction
Wee1 is a cell cycle regulator that coordinates the timing of the onset of mitosis
with cell growth [1,2]. The term ‘wee’ was coined after fission yeast mutants
with small cell size. They were initially identified through a genetic screen for
cdc (cell division cycle) mutants [3], or for suppressors of the cdc25-22 mutant
that was arrested at the G2/M boundary at the restrictive temperature. The sub-
sequent genetic analysis revealed that two genes, wee1+ and cdc2+, are mutable to
small-cell-sized mutants [4,5]. Extensive efforts have been made to elucidate the
functional relationship among Wee1, Cdc2 and Cdc25 in fission yeast and other
organisms, which have led to the conclusion as follows:Wee1 catalyses an inhibi-
tory tyrosine phosphorylation of Cdc2/Cdk1, a cyclin-dependent kinase essential
forG2/M transition. Cdc25 counteractsWee1 by dephosphorylating Cdc2/Cdk1,
driving the cell cycle into mitosis [6–8]. Although the fission yeast wee mutants
allow for an earlier onset of mitosis and subsequent cell division, generating
two smaller daughter cells, they are viable and no abnormal mitotic events
have so far been reported.

Accurate chromosome segregation during mitosis is vital for stable trans-
mission of genetic material. The spindle checkpoint is a surveillance mechanism
that delays the onset of anaphase until all kinetochores are properly attached to
the spindle, thus ensuring accurate chromosome segregation. The components
of the spindle checkpoint accumulate at unattached kinetochores and form a com-
plex, mitotic checkpoint complex (MCC) [9], transducing a signal to prevent
activation of anaphase-promoting complex or cyclosome (APC/C), a specific E3
ubiquitin ligase [10,11]. Separase triggers sister chromatid separation by cleaving
Scc1, a member of the cohesin complex. It is kept inactive during most of the
cell cycle by binding securin, which is degraded following ubiquitination by
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Figure 1. Kinetochore-microtubule attachment is not stable in the wee1 mutants. Time-lapse images were taken every 5 min at 26°C. The Z-stack images were
projected with a maximum intensity method. (a) An example of time-lapse images of the wild-type strain (WT) is shown. (b,c) Examples of the wee1Δ strain
(wee1Δ), in which the satellite kinetochore appeared once (b) and multiple times (c) during the observation, are shown. In the merged images, GFP-Cnp1 is shown
in green, and mCh-Atb2 in magenta. The numbers on the left of the images indicate the time elapsed after the onset of mitosis. The arrowhead indicates the
satellite kinetochore. The bar indicates 10 µm.
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Figure 2. The onset of anaphase is delayed in the wee1 mutants. The time-lapse images were analysed statistically for the wild-type strain (WT) (n = 30) and the
wee1Δ strain (n = 62). (a) Kinetics of the spindle length in each of the WT and in the wee1Δ strain are shown graphically. (b) The mitotic duration (from the entry
into mitosis to the onset of anaphase) for the WT and the wee1Δ strain (wee1Δ) is shown. The blue bars indicate cells with no satellite kinetochores. The light
green bars indicate cells in which the satellite kinetochore appeared at least once, and the dark green bars the duration for which the satellite kinetochore was
observed. (c) The percent of cells, in which satellite kinetochore appeared at least once, is shown.

royalsocietypublishing.org/journal/rsob
Open

Biol.14:230379

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 J

an
ua

ry
 2

02
4 



0

–10

WT(a)

(b)

(c)

Mad2-GFP mCh-Atb2 merge

10

20

min

0

–10

wee1�
Mad2-GFP mCh-Atb2 merge

–10

0

10

20

30

40

50

60

70

80

min

wee1�
Mad2-GFP mCh-Atb2 merge

10

20

30

min

Figure 3. The spindle checkpoint is activated in the wee1 mutants. Time-lapse images were taken every 5 min at 26°C. The Z-stack images were projected with a
maximum intensity method. Examples of time-lapse images of the wild-type strain (WT) (a) and the wee1Δ strain (wee1Δ) (b,c) are shown. Bright Mad2-GFP
speckle appeared once (b) or multiple times (c) in the wee1Δ strain. In the merged images, Mad2-GFP is shown in green and mCh-Atb2 in magenta. The numbers
on the left of the images indicate the time elapsed after the onset of mitosis. The arrowhead indicates the Mad2 speckle. The bar indicates 10 µm.
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APC/C [12]. The spindle checkpoint therefore prevents the
onset of anaphase, the stage inwhich sister chromatids separate,
by ultimately blocking separase until the last kinetochore is
attached to the spindle.

In this report, we show that the wee1 mutant requires the
functional spindle checkpoint, whereas the cdc2-1w and cdc2-
3w mutants, small-cell-sized mutants allelic to cdc2+, do not.
Our analysis also shows that kinetochores are often unattached
in the wee1 mutant. Mad2, a component of MCC [9], accumu-
lates in the vicinity of the spindle, presumably representing
MCC assembled at an unattached kinetochore, and delays the
onset of anaphase. We have thus concluded that the wee1
mutant cannotmaintain stable kinetochore-microtubule attach-
ment, and relies on the delay imposed by the spindle
checkpoint for establishing biorientation of kinetochores.
2. Results
2.1. The wee1-50 mutant requires the functional

spindle checkpoint
As shown in electronic supplementary material, figure S1A,
we found that a wee1-50 mad2Δ (deletion for mad2+, a gene
encoding a component of the spindle checkpoint) double
mutant is lethal at 36°C. Likewise, introduction of deletion
for other components of the checkpoint (Mad1 and Bub1)
caused a temperature sensitivity of the growth in the wee1-50
mutant (electronic supplementary material, figure S1A).
Because the spindle checkpoint is a surveillance system that
regulates the onset of anaphase [10,11], a stage well after the
entry into mitosis, it was intriguing to pin down the under-
lying mechanism of the synergistic lethality between the loss
of Wee1 and the spindle checkpoint.

Two alleles at the cdc2+ locus, cdc2-1w and cdc2-3w, render
Cdc2 insensitive to the negative control byWee1 kinase. Keep-
ing the Wee1 kinase functional, these alleles allow an earlier
onset of mitosis [4,5]. As shown in electronic supplementary
material, figure S1B, introduction of deletion for mad2+ did
not cause the lethality in the cdc2-1w and cdc2-3w mutants.
The results along with other results from genetic studies (elec-
tronic supplementary material, figure S1C and table S2)
suggested that the cause of the synergistic lethality is unrelated
to the earlier onset of mitosis in the wee1-50 mutant.

2.2. Kinetochore-microtubule attachment is not stable
in the wee1 mutants

Because the wee1-50 mutant requires the functional spindle
checkpoint for its viability, we attempted to identify an
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Figure 4. The activation of spindle checkpoint delays anaphase onset in the wee1 mutants. (a) The time-lapse images were analysed statistically for the wild-type
strain (WT) (n = 30) and the wee1Δ strain (n = 101). Kinetics of the spindle length in each of the WT and in the wee1Δ strain are shown graphically. (b) The
mitotic duration (from the entry into mitosis to the onset of anaphase) for the WT and the wee1Δ strain (wee1Δ) is shown. The blue bars indicate cells with no
Mad2 speckles. The light green bars indicate cells in which Mad2 speckle appeared at least once, and the dark green bars the duration for which Mad2 speckle was
observed. (c) The percent of cells, in which Mad2 speckle appeared at least once, is shown.
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abnormal mitotic event in the mutant by time-lapse imaging
of live cells. The spindle was fluorescently labelled by expres-
sing α-tubulin tagged with mCherry and the kinetochores by
Cnp1 (a fission yeast homologue of mammalian CENP-A)
tagged with GFP.

Fission yeast centromeres/kinetochores are clustered and
localized to the nuclear envelope near spindle pole body
(SPB), a structure analogous to the centrosome. Upon the
onset of mitosis, they are released from the nuclear envelope.
Because all kinetochores are positioned close to SPB, they are
quickly captured by microtubules and bioriented. Under a flu-
orescent microscope, they are therefore observed as a single
speckle on the spindle [13,14]. Consistently, in each of the
wild-type cells observed in this study, the single fluorescent
speckle representing kinetochores was always found on the
spindle from the onset ofmitosis, whichwas defined by the dis-
appearance of cytoskeletal microtubules and emergence of
spindle microtubules, until the onset of anaphase (figure 1a).
Mitosis progressed with no apparent delay and anaphase was
initiated within 15 min from the entry into mitosis in the
wild-type cells (figure 2a,b).

Time-lapse imaging analysis revealed abnormal position-
ing of kinetochores in the wee1 (wee1Δ) mutant. The cluster of
kinetochores frequently fell apart into a main cluster and a
small ‘satellite kinetochore’ during mitosis (figure 1b). The
satellite kinetochores eventually merged with the main
cluster, but they occasionally reappeared (figure 1c). Because
the kinetochores, which are captured and bioriented, are clus-
tered and found on the spindle, the satellite kinetochores
remained unattached, or detached from the spindle during
the progression to anaphase in the wee1 mutant (electronic
supplementary material, figure S2). Importantly, the onset
of anaphase was postponed until all the satellite kinetochores
merged with the main cluster in the mutant (figure 2a,b). In
approximately 29% (18 cells out of 62 cells observed) of the
wee1 mutants, the satellite kinetochore appeared at least
once during mitosis (figure 2c).

It has been reported that dikaryotic cells spontaneously
emerge in thewee1mutant [4,15], though theprecisemechanism
remains unknown. Consistently, we observed 76 wee1Δ cells,
of which 14 cells were dikaryotic. We excluded these cells
from the statistical analysis because we were unable to accu-
rately identify satellite kinetochores (electronic supplementary
material, figure S3).
2.3. The spindle checkpoint is activated in the wee1
mutants

We speculated that the delay in the onset of anaphase observed
in the wee1mutant was imposed by the spindle checkpoint. In
order to confirm the activation of the checkpoint,wemonitored
Mad2, a component of the checkpoint shown to accumulate on
unattached kinetochores [16–18]. The spindlewas fluorescently
labelled by expressing α-tubulin tagged with mCherry and
Mad2 tagged with GFP.

Consistently with previous study [19,20], Mad2 was
observed as a single speckle, likely at SPB or the cluster of
kinetochores around the onset of mitosis, suggesting that
SPB may serve as a reservoir of Mad2, or kinetochores
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clustering near SPB are not attached to the spindle. As mitosis
progressed, it was faintly found on the entire length of the
spindle and SPB in the wild-type cells (figure 3a). By contrast,
Mad2 was found as one or two bright speckles in the vicinity
of the spindle during mitosis in the wee1 mutant (figure 3b,c).
Judged by the length of the spindle, anaphase was initiated
soon after Mad2 speckles disappeared (figure 4a,b). In
approximately 28% (28 cells out of 101 cells observed) of
the wee1 mutants, the Mad2 speckle appeared at least once
(figure 4c). The observation thus suggested that the spindle
checkpoint was activated in the wee1 mutants.

The results described above indicated that thewee1mutant
cannot maintain stable kinetochore-microtubule attachment,
and heavily relies on the delay imposed by spindle checkpoint
for reestablishing biorientation of kinetochores. As shown in
figure 5, the wee1 mutants with no functional spindle check-
point indeed failed in accurate chromosome segregation and
generated two sister cells with unequal nuclear size.
3. Discussion
In this study, by live cell imaging analysis, we showed that
kinetochores are frequently unattached and the onset of ana-
phase is delayed in the wee1 mutant. We confirmed that the
delay in the onset of anaphase in the wee1 mutant is imposed
by the spindle checkpoint that is activated by the accumulation
of Mad2, representing formation of MCC for signalling of the
checkpoint. Although not directly demonstrated in this study,
we speculate that Mad2 accumulates as the speckle(s) at unat-
tached kinetochores in the vicinity of the spindle in the wee1
mutant. Based on these results, we propose that the wee1
mutant is unable to maintain stable kinetochore-microtubule
attachment. It is likely that the activity of Wee1 kinase is
necessary for stabilizing this attachment.

In addition to Cdks, at least two other proteins have been
characterized, to our knowledge, as substrates ofWee1 kinase.
KLP61F, a kinesin-5 in Drosophila, is phosphorylated by Wee1
at three tyrosine residues (Y23, Y152 and Y207) within the
head domain. The expression of KLP61F3YF, a mutant carrying
replacement of the three tyrosine residues with phenyl-
alanines, causes abnormal morphology of the spindle. The
phenotypes have been observed in embryos lacking Wee1,
and shown not to be due to premature entry into mitosis
[21,22]. Among the three tyrosine residues of KLP61F, Y207
is conserved in the human kinesin-5 (Eg5) at Y211, which is
phosphorylated by Src kinase, not Wee1. Replacement of
Y211 with a phosphomimetic amino acid (glutamic acid)
leads to the formation of monopolar spindles in vivo, a pheno-
type observed in cells lacking endogenous Eg5. Replacement
of Y211 with phenylalanine causes disorganized spindles,
which mimics the effect of the Src kinase inhibitor, SU6566
[23]. This suggests that Y211 in Eg5 and likely Y207 in
KLP61F are major tyrosine residues that regulate kinesin-5
through phosphorylation. Cut7 is the only known kinesin-5
in fission yeast. The function of Wee1 in controlling Cut7 is
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not clear because Cut7 lacks a tyrosine residue at the position
corresponding to Y207 in Drosophila KLP61F. Wee1 also
phosphorylates histone H2B at Tyr37 in mammalian cells
and at Tyr40 in budding yeast. The phosphorylation of
Tyr37 occurs upstream of histone cluster, Hist1, and inhibits
the transcription of multiple histone genes [24]. The Tyr37 in
histone H2B is conserved in fission yeast, but it has not been
thoroughly studied. Currently, we do not have strong evidence
to suggest that the two proteins, Cut7 and histoneH2B, are not
regulated by Wee1 kinase in order to maintain stable kineto-
chore-microtubule attachment. It is, however, plausible to
speculate that Wee1 phosphorylates and regulates a protein
more directly involved in kinetochore assembly, capturing
kinetochores or a relating process.

Wee1 has been extensively studied as a therapeutic target
for cancer treatment. Inhibition of Wee1 is expected to force
cancer cells undergoing DNA replication or repair to enter
mitosis, resulting in cell death through mitotic catastrophe
[25–27]. Interestingly, two studies have reported that a Wee1
inhibitor, MK-1775, causes a delay in mitotic progression. In
HeLa cells treated with the inhibitor at prometaphase, the
onset of anaphase is significantly delayed [28]. Another
study has shown that human tongue squamous carcinoma
cells (SAS) treated with MK-1775 are arrested at metaphase.
The arrest is dependent on the spindle checkpoint because it
is abrogated by an inhibitor of Mps1, an essential kinase of
the checkpoint signalling [29]. Our study presented here
suggests that the Wee1 inhibitor MK-1775 may act by destabi-
lizing the attachment between kinetochores andmicrotubules,
and could serve as a basis for improving and developing
Wee1-targeted cancer chemotherapy.
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