46 research outputs found

    Fragment distribution of thermal decomposition for lignin monomer by QMD calculations using the excited and charged model molecules

    Get PDF
    金沢大学理工研究域物質化学系Simulations with a quantum molecular dynamics (QMD) method (MD with MO) were demonstrated on the thermal decomposition of lignin monomer at the ground state including excited and positive charged states. Geometry and energy optimized results of the lignin monomer at the singlet and triplet states in single excitation, and at (+2) positive charged state by semi-empirical AM1 MO calculations were used as the initial MD step of QMD calculations. In the QMD calculations, we controlled the total energy of the system using Nóse-Hoover thermostats in the total energy range of 0.69-0.95 eV, and the sampling position data with a time step of 0.5 fs were carried out up to 5000 steps at 50 different initial conditions. The calculated neutral, positive and negative charged fragment distributions of the monomer model with 0.82 eV energy control were obtained as 90.6, 3.5, and 5.9% to the total fragments, respectively. The ratios seem to correspond well with to the values observed experimentally in SIMS. Crown Copyright © 2008

    Recombinant human FGF-2 for the treatment of early-stage osteonecrosis of the femoral head: TRION, a single-arm, multicenter, Phase II trial

    Get PDF
    Aim: This study aimed to evaluate the 2-year outcomes from a clinical trial of recombinant human FGF-2 (rhFGF-2) for osteonecrosis of the femoral head (ONFH). Patients & methods: Sixty-four patients with nontraumatic, precollapse and large ONFHs were percutaneously administered with 800 μg rhFGF-2 contained in gelatin hydrogel. Setting the end point of radiological collapse, we analyzed the joint preservation period of the historical control. Changes in two validated clinical scores, bone regeneration and safety were evaluated. Results: Radiological joint preservation time was significantly higher in the rhFGF-2 group than in the control group. The ONFHs tended to improve to smaller ONFHs. The postoperative clinical scores significantly improved. Thirteen serious adverse events showed recovery. Conclusion: rhFGF-2 treatment increases joint preservation time with clinical efficacy, radiological bone regeneration and safety

    Degradation of Mutant Protein Aggregates within the Endoplasmic Reticulum of Vasopressin Neurons

    Get PDF
    Misfolded or unfolded proteins in the ER are said to be degraded only after translocation or isolation from the ER. Here, we describe a mechanism by which mutant proteins are degraded within the ER. Aggregates of mutant arginine vasopressin (AVP) precursor were confined to ER-associated compartments (ERACs) connected to the ER in AVP neurons of a mouse model of familial neurohypophysial diabetes insipidus. The ERACs were enclosed by membranes, an ER chaperone and marker protein of phagophores and autophagosomes were expressed around the aggregates, and lysosomes fused with the ERACs. Moreover, lysosome-related molecules were present within the ERACs, and aggregate degradation within the ERACs was dependent on autophagic-lysosomal activity. Thus, we demonstrate that protein aggregates can be degraded by autophagic-lysosomal machinery within specialized compartments of the ER

    High-density excitation effect on photoluminescence in ZnO nanoparticles

    Get PDF
    In this study, photoluminescence PL under high excitation intensity as a function of crystalline size was systematically investigated through ZnO nanocrystalline films prepared by spin-coating a colloidal solution of ZnO nanoparticles obtained using the microemulsion method. Annealing of the films at 723, 633, and 593 K allowed us to tune the crystalline radius R. PL studies distinguished different regimes of crystalline size according to the ratio of R to the effective Bohr radius aB R/aB. For the sample annealed at 723 K R/aB=7.2 , the peak of stimulated emission due to the exciton-exciton collisions appeared on the low-energy side of the exciton emission with an increase in excitation intensity. A further increase in excitation intensity eventually resulted in the occurrence of an electron-hole plasma EHP accompanied by consequent band gap renormalization, which indicates that high excitation intensity provokes the dissociation of excitons. For the sample annealed at 633 K R/aB=4.7 , the stimulated emission was observed while the transition to EHP was obscure. For the sample annealed at 593 K R/aB=2.1 , only emissions due to the recombination of the electron-hole pair were observed, and stimulated emission did not appear even when the excitation intensity was increased. The transition from free-exciton emission to donor-bound exciton emission was observed in temperature dependence of PL only for the sample with R/aB=7.2. The origin of annihilation of the stimulated emission with a size reduction is discussed based on nonradiative Auger recombination
    corecore