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SUMMARY

Misfolded or unfolded proteins in the ER are said to be degraded only after trans-
location or isolation from the ER. Here, we describe amechanismbywhichmutant
proteins are degraded within the ER. Aggregates of mutant arginine vasopressin
(AVP) precursor were confined to ER-associated compartments (ERACs) con-
nected to the ER in AVP neurons of a mouse model of familial neurohypophysial
diabetes insipidus. The ERACs were enclosed by membranes, an ER chaperone
and marker protein of phagophores and autophagosomes were expressed
around the aggregates, and lysosomes fused with the ERACs. Moreover, lyso-
some-related molecules were present within the ERACs, and aggregate degrada-
tion within the ERACs was dependent on autophagic-lysosomal activity. Thus, we
demonstrate that protein aggregates can be degraded by autophagic-lysosomal
machinery within specialized compartments of the ER.

INTRODUCTION

The ER is an organelle mainly responsible for the synthesis, folding, assembly, and transport of proteins

(Kaufman, 1999). While properly folded proteins are packed into secretory granules as secretory proteins

or transported to the cellular membrane as membrane proteins through the Golgi apparatus (Braakman

and Bulleid, 2011; Gidalevitz et al., 2013), misfolded or unfolded proteins accumulate in the ER causing

ER stress (Hetz, 2012; Schroder and Kaufman, 2005; Wang and Kaufman, 2012). The unfolded protein

response, including ER-associated degradation (ERAD), is a cellular mechanism by which ER stress is

reduced. Through the ERAD machinery, misfolded or unfolded proteins are translocated from the ER to

the cytosol and degraded by the ubiquitin-proteasome system (UPS) (Guerriero and Brodsky, 2012; Qi

et al., 2017; Smith et al., 2011). In addition, a growing body of evidence has accumulated regarding ER-

phagy machinery targeting protein aggregates in the ER lumen that cannot be degraded by ERAD (Fregno

and Molinari, 2018; Smith and Wilkinson, 2017; Song et al., 2018; Wilkinson, 2019). In macro-ER-phagy, an

isolationmembrane called a phagophore sequesters a portion of the ER containing the aggregates to form

an autophagosome, which fuses with a lysosome to degrade the contents (Cunningham et al., 2019; For-

rester et al., 2019; Schultz et al., 2018). Recent studies have also reported another type of ER-phagy, mi-

cro-ER-phagy, in which a lysosome engulfs or fuses with aggregate-containing ER buds independent of au-

tophagosome biogenesis (Fregno et al., 2018; Omari et al., 2018). In either case of ERAD or ER-phagy,

aggregates in the ER are degraded only after translocation or isolation from the ER.

Arginine vasopressin (AVP), an antidiuretic hormone, is synthesized in magnocellular neurons of the supra-

optic nuclei (SON) and paraventricular nuclei (PVN) in the hypothalamus (Bisset and Chowdrey, 1988). The

AVP gene encodes a signal peptide, AVP, the AVP carrier protein neurophysin II (NPII), and a glycoprotein,

also referred to as copeptin (Sausville et al., 1985). Upon removal of the signal peptide, prepro-AVP is trun-

cated to pro-AVP, which is folded into its native conformation in the ER and then is packed into secretory

granules. AVP, NPII, and the glycoprotein are cleaved from pro-AVP in the vesicle during transport to the

posterior pituitary, from which AVP is released into systemic circulation in response to changes in plasma

osmolality and blood pressure (Brownstein et al., 1980; Burbach et al., 2001). AVP is also known to be
iScience 23, 101648, October 23, 2020 ª 2020 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:d-hagiwara@med.nagoya-u.ac.jp
mailto:d-hagiwara@med.nagoya-u.ac.jp
mailto:arima105@med.nagoya-u.ac.jp
mailto:arima105@med.nagoya-u.ac.jp
https://doi.org/10.1016/j.isci.2020.101648
https://doi.org/10.1016/j.isci.2020.101648
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.101648&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. SBF-SEM Analysis of the SON from FNDI Mice

(A) Three-dimensional reconstruction of a brain volume obtained from serial electron microscopic images of the SON

from FNDI mice. An AVP neuron (green) is observed on the surface of the block. Scale bars: 5 mm.

(B) Two adjacent AVP neurons (blue and light blue) in the SBF-SEM image which have large electron-dense ERACs

(asterisks, colored red in inset) and surrounding intact rough ER (inset, arrowheads). The boxed region is shown at higher

magnification (inset). Scale bars: 5 mm.
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released from dendrites and to modulate the phasic activity of AVP neurons by autocrine regulation in or-

der to maximize AVP secretion efficiency (Ludwig and Leng, 2006; Pow and Morris, 1989).

Familial neurohypophysial diabetes insipidus (FNDI) is an autosomal dominant disease caused by muta-

tions in the AVP gene locus, predominantly in the region encoding NPII (Arima et al., 2016; Babey et al.,

2011; Christensen and Rittig, 2006). We previously generated FNDI model mice by introducing an NPII mu-

tation (that causes FNDI in humans) into the AVP gene locus, and the resulting heterozygous mice recapit-

ulated the phenotypes of patients with FNDI. Owing to AVP deficiency, urine volumes and water intake

were significantly increased, and urine osmolality was significantly reduced in FNDI mice compared with

wild-type mice (Hayashi et al., 2009). In the AVP neurons of FNDI mice, inclusion bodies were present

and increased in size as the mice aged in proportion to the increase in urine volumes (Hayashi et al.,

2009) and decreased in size when the FNDI mice were treated with desmopressin (Hiroi et al., 2010), an

AVP agonist (Edwards et al., 1973). Electron microscopic analyses of AVP neurons in FNDI mice revealed

that aggregates were confined to a specific compartment of the rough ER, termed the ERAC (ER-associ-

ated compartment) (Hagiwara et al., 2014). Despite the presence of massive aggregates in the ER of

AVP neurons in FNDI mice, there was no significant difference in the expression levels of an ER chaperone

immunoglobulin heavy chain binding protein (BiP) in AVP neurons between wild-type and FNDI mice at

3 months of age. This suggests that the pathophysiological significance of ERACs is their ability to maintain

function in the remainder of the ER by sequestering and confining aberrant proteins to the ERAC (Hagiwara

et al., 2014). However, it remains to be elucidated whether ERACs are connected to the intact ER lumen or if

there are any mechanisms by which aggregates are degraded within the ERACs.

In the present study, we hypothesized that aggregates are degraded by lysosomes within the ERACs which

maintain connection to the intact ER lumen. To test this hypothesis, we investigated the following: (1) the struc-

tural relationships between ERACs, ERmembranes, and lysosomes by serial block-face scanning electronmicro-

scopy (SBF-SEM), (2) the localization of several molecules involved in autophagic-lysosomal degradation, as well

as ER chaperones by immunoelectron microscopy, and (3) the pharmacological effects of inducing or inhibiting

the autophagic-lysosomal degradation system on ERAC formation in AVP neurons of FNDI mice.

RESULTS

ERACs Are Connected to the Intact ER Lumen

In order to elucidate the detailed structural relationships between organelles, three-dimensional electron

microscopic analyses were performed by acquiring several sets of serial electron microscopic images from

the SON of FNDI mice using SBF-SEM. Each dataset spanned volumes of approximately 30–50 mm x 30–

40 mm x 16–20 mm at subcellular resolution (Figure 1A). These datasets included SON neurons which
2 iScience 23, 101648, October 23, 2020



Figure 2. ERACs Are Connected to the Intact ER Lumen and Lysosomes

(A–E) Serial images of an ERAC (A, red) with multiple small protrusions (A, arrows). The boxed regions in A1-3 are magnified in the inset (A2) or in other panels

(B4 and D3). Magnified serial images of one ERAC protrusion connected to the intact ER lumen (B1-4, B10-40 , arrows). The compartments associated with the

connection are colored red (B10-40). Three-dimensional reconstruction of an ERAC (C, red) and intact ER (C, blue). Magnified serial electron microscopic
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Figure 2. Continued

images (D1-12) and 3D reconstruction (E) of one protrusion (D2-9, arrowheads, colored red) connected to an ERAC (partly colored red in D1-3) which is

shown to be connected to the ER in B and C. The tip of the protrusion (D10-12, white arrowheads) exposed to the cytosol is connected to a lysosome (D9-

12, colored purple). A three-dimensional reconstruction of an ERAC (E, red) and a lysosome (E, purple) is shown. The numbers in the upper-right corners

indicate the respective slice within the electron microscopic image stack. Scale bars: 1 mm (A1) and 500 nm (B1, C, D1, and E). See also Figures S1 and S2

and Videos S1 and S2.
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possessed electron-dense ERACs located in their cytosol and surrounded by various organelles including

the rough ER (Figure 1B). Detailed analyses of these serial images showed that the ERACs were enclosed by

membranes of high electron density surrounded by an electron-lucent area and that they frequently had

small protrusions (Figure 2A). Careful tracing revealed that these ERAC-derived protrusions were often

connected to the intact ER lumen (Figures 2A3, 2B1-4, and 2C, and Video S1). A montage image of two

angularly connected electron microscopic images reconstructed from the original serial images also

showed the connection between the ERAC and intact ER lumen (Figure S1). In addition, another protrusion

originating from the ER-connected ERAC was also found connected to electron-dense lysosomes in the

cytosol (Figures 2D and 2E, and Video S2). ERACs containing a relatively small amount of aggregates

were also fused with lysosomes but not via the protrusions (Figure S2, and Videos S3 and S4). These results

suggest that ERACs have direct connections with both the ER lumen and lysosomes in the cytosolic

compartment of AVP neurons and that mutant aggregates in the ER could undergo degradation by lyso-

somes from relatively early stages of ERAC formation.
Mutant NPII Is Confined within ERACs of AVP Neurons in FNDI Mice

To distinguish normal from mutant NPII, we used two types of antibodies, as described previously (Ben-

Barak et al., 1984, 1985; Hayashi et al., 2009). In AVP neurons of FNDI mice, immunofluorescence staining

showed that mutant NPII was expressed in round structures; in contrast, there were no normal NPII signals

within these structures (Figures 3A–3C). Immunoelectron microscopy demonstrated that mutant NPII was

expressed in ERACs (Figures 3D and 3E) and in aggregates in the ER lumen (Figure 3G), suggesting that

immunohistochemical staining of mutant NPII in areas other than the round structures represents regions

in the ER where mutant NPII is also present. Mutant NPII was not expressed in the electron-lucent area

around the aggregates (Figure 3D). While our previous study clearly demonstrated that aggregates

were surrounded by membranous structures studded with ribosomes (Morishita et al., 2011), this is less

clear in the immunoelectron microscopic analyses in which the membranous structures may be difficult

to maintain. Normal NPII was found in neurosecretory granules of the cell bodies in AVP neurons and in

the nerve terminals of the posterior pituitary, but not in the ER, in both FNDI (Figures 3F–3I) and wild-

type mice (Figure S3). In contrast, mutant NPII was not observed in either neurosecretory granules or the

nerve terminals of the posterior pituitary in FNDI mice (Figures 3D–3I). These data indicate that mutant

AVP precursors are confined to ERACs and not subjected to proper cellular trafficking out of the ER.
ERACs Are Surrounded by Phagophore-like Membranes Derived from the ER

Immunofluorescent signals for BiP appeared to surround the round structures that were positive for mutant

NPII antibodies in AVP neurons of FNDI mice (Figures 4A–4C). Immunoelectron microscopic analyses re-

vealed that BiP was expressed in aggregate-surrounding areas including the electron-lucent regions (Fig-

ures 4D and 4E). Our data, derived using immunoelectron microscopy, also showed that both mutant NPII

(Figure 3G) and BiP (Figure S4) were expressed in the ER of AVP neurons of FNDI mice, suggesting that the

overlapping areas between mutant NPII and BiP immunostaining in areas other than the round structures

likely correspond to the ER. In wild-type mice, BiP was expressed in the ER of AVP neurons (Figures S3A–

S3C). Green fluorescent protein (GFP)–labeled microtubule-associated protein 1 light chain 3 (LC3) was

also observed surrounding these rounded structures that were positively stained with mutant NPII anti-

bodies in the AVP neurons of FNDI/GFP-LC3 mice (Figures 4F–4H) and was also detected around aggre-

gates based on immunoelectron microscopy (Figure 4I). In contrast, immunofluorescent signals for GFP-

LC3 were not visible in AVP neurons of GFP-LC3 mice (Figure S5). These findings suggest that ERACs

are surrounded by membranes characteristic of phagophores derived from the ER.
Lysosome-Related Molecules Are Expressed within ERACs

Immunofluorescence images demonstrated that lysosome-associated membrane protein 2 (LAMP2) (Fig-

ures 5A–5C) and cathepsin D (Figures 5D–5F) were localized within the round mutant NPII-positive struc-

tures in AVP neurons of FNDI mice, while these signals were not observed in the AVP neurons of wild-
4 iScience 23, 101648, October 23, 2020



Figure 3. Mutant NPII Is Confined within ERACs in AVP Neurons of FNDI Mice

(A–C) Immunofluorescence staining for mutant (green) and normal (magenta) NPII, as well as DAPI (blue) in the SON of FNDI mice. Higher magnification

images of the boxed areas in the left panels are shown at right. Scale bars: 50 mm (left panels) and 10 mm (right panels).

(D–I) Immunoelectron microscopic analysis of mutant NPII (10 nm gold particles) and normal NPII (15 nm gold particles) in AVP neurons from the SON (D–G)

and posterior pituitary (H and I) of FNDI mice. (D) An ERAC and a vesicle containing neurosecretory granules are shown. (G) Aggregates in the ER lumen.

Higher magnification images of the boxed areas in D and H are shown in E, F, and I, respectively. The white arrowheads in F, G, and I indicate neurosecretory

granules containing AVP. m: mitochondria. Scale bars: 100 nm (D, E, F, and I) and 500 nm (G and H).

See also Figure S3.
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type mice (Figure S6). Further analyses using immunoelectron microscopy revealed that LAMP2 and

cathepsin D were present inside the ERACs (Figures 5G and 5H) but not in the electron-lucent areas around

the aggregates, suggesting that lysosomes were incorporated into ERACs. Furthermore, the overlap be-

tween mutant NPII and LAMP2 immunostaining in areas other than the round structures suggests that ly-

sosomes also fuse to the ER where relatively small aggregates are found, as shown in Figure S2. On the

other hand, the finding that cathepsin D was preferentially located in the aggregates within ERACs sug-

gests the possibility that lysosomal acid hydrolases including cathepsin D are confined to ERACs and do

not spread into the intact ER lumen.
The Accumulation of Aggregates within ERACs Is reduced by the Autophagy Inducer

Rapamycin and Increased by the Lysosome Inhibitor Chloroquine

To examine whether peripheral injection of rapamycin and chloroquine could act on the hypothalamus,

LC3 conversion (LC3-I to LC3-II) in the hypothalamus of wild-type mice injected with rapamycin or chloro-

quine was analyzed by immunoblotting. The LC3-II/LC3-I ratio was increased in the rapamycin group
iScience 23, 101648, October 23, 2020 5



Figure 4. ERACs Are Surrounded by Membranes that Express BiP and LC3

(A–C) Immunofluorescence staining for mutant NPII (green) and BiP (magenta) in the SON of FNDI mice. Higher magnification images of the boxed areas in

the left panels are shown at right. Scale bars: 50 mm (left panels) and 10 mm (right panels).

(D and E) Immunoelectron microscopic analysis for BiP (10 nm gold particles) and normal NPII (15 nm gold particles) in AVP neurons from the SON of FNDI

mice. Higher magnification image of the boxed area in D is shown in E. m: mitochondria, Gol: Golgi apparatus. Scale bars: 500 nm (D) and 100 nm (E).

(F–H) Immunofluorescence staining for GFP-LC3 (green) and mutant NPII (magenta) in the SON of FNDI/GFP-LC3 mice. Higher magnification images of the

boxed areas in the left panels are shown at right. Scale bars: 50 mm (left panels) and 10 mm (right panels).

(I) Immunoelectron microscopic analysis of GFP-LC3 (12 nm gold particles, white arrowheads) in AVP neurons from the SON of FNDI/GFP-LC3 mice. A small

portion of an ERAC is shown. Scale bar: 100 nm.

See also Figures S3–S5.
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compared with the control (Figure S7A), suggesting that autophagic flux was increased in the hypothala-

mus of mice treated with the autophagy inducer rapamycin. The LC3-II/LC3-I ratio was also increased in

the chloroquine group compared with the control (Figure S7B). This is consistent with previous studies

showing that LC3-II, a substitute of autophagic degradation, was increased relative to LC3-I when autopha-

gic degradation was inhibited by the lysosome inhibitor chloroquine (Han et al., 2019).

In FNDI mice, the number of inclusion bodies over 4.5 mm in diameter [the mean size in 3-month-old FNDI

mice (Hagiwara et al., 2014)] was significantly decreased by rapamycin treatment (Figure 6A), while the

number of inclusion bodies was significantly increased by chloroquine administration (Figure 6B).
6 iScience 23, 101648, October 23, 2020



Figure 5. Lysosome-Related Molecules Are Expressed within ERACs

(A–F) Immunofluorescence staining for mutant NPII (green) and LAMP2 or cathepsin D (magenta) in the SON of FNDI mice. Higher magnification images of

the boxed areas in the left panels are shown at right. Scale bars: 50 mm (left panels) and 10 mm (right panels).

(G and H) Immunoelectron microscopic analysis of LAMP2 (G, 10 nm gold particles, white arrowheads) or cathepsin D (H, 10 nm gold particles, white

arrowheads) in AVP neurons from the SON of FNDI mice. The large images show a small portion of an ERAC; higher magnification images of the boxed areas

are shown in the insets at lower left. Scale bars: 500 nm.

See also Figure S6.
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DISCUSSION

In the present study, we showed that ERACs, in which mutant NPII was accumulated, were

connected to the intact ER and enclosed by membranes. We also showed that BiP and LC3 were ex-

pressed around the aggregates and that LAMP2 and cathepsin D were present within the ERACs.
iScience 23, 101648, October 23, 2020 7



Figure 6. Accumulation of Aggregates within ERACs Is Reduced by the Autophagy Inducer Rapamycin and

Increased by the Lysosome Inhibitor Chloroquine

(A–D) Representative images of immunohistochemical staining for mutant NPII in the SON and the number of inclusion

bodies with a diameter >4.5 mm in the SON of 3-month-old FNDI mice in the control and rapamycin (Rapa, A and B) or

chloroquine (CQ, C and D) or groups. Results are expressed asmeansG SE; n = 5–7 animals per group.White arrowheads

indicate the inclusion bodies. Scale bars: 50 mm.

(E) Possible mechanisms of ERAC formation and mutant NPII degradation in AVP neurons of FNDI mice. Mutant NPII is

confined to the ERACs of AVP neurons in FNDI mice. The ER chaperone BiP was localized around the ERACs, indicating

that ERACs are connected to the ER and that BiP might be associated with ERAC formation. Furthermore, LAMP2 and

cathepsin D were expressed in ERACs surrounded by membranes with LC3, suggesting that lysosomes degrade mutant

NPII within ERACs which are connected to the ER. mNPII: mutant NPII.

See also Figure S7.
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Furthermore, our data showed that the number of ERACs was decreased or increased by

rapamycin or chloroquine treatment, respectively. Figure 6E summarizes the findings of our present

study.
8 iScience 23, 101648, October 23, 2020
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The formation of ERAC-like structures has been reported not only in FNDI but also in other diseases, such

as a1-antitrypsin deficiency (Granell et al., 2008), familial encephalopathy with neuroserpin inclusion bodies

(Hagen et al., 2011), seipinopathy (Ito et al., 2012), and autosomal dominant retinitis pigmentosa (Chiang

et al., 2012; Saliba et al., 2002). While previous studies including ours suggested that aggregates were

confined to a subcompartment of the ER, it has been unclear whether there is any communication between

the ER and these compartments. In the present study, we demonstrated that ERACs were connected to the

intact ER lumen using SBF-SEM. Furthermore, our data showed that membranes enclosed the aggregates,

around which an ER chaperone (BiP) was expressed, suggesting that the ERAC membranes were derived

from the ER. As ERAC formation reportedly mitigates ER stress and improves cellular viability not only in

FNDI (Hagiwara et al., 2014) but also in a1-antitrypsin deficiency (Granell et al., 2008), it could be a common

unfolded protein response shared by several cell types for coping with ER stress. Whether aggregates

within ERACs are degraded by autophagic-lysosomal machinery in other diseases remains to be

elucidated.

The finding that mutant NPII was not observed in the neurosecretory granules but was exclusively within

ERACs and small aggregates in the ER lumen is consistent with previous in vivo and in vitro studies showing

that mutant AVP precursors, resulting from various AVP gene mutations, also accumulated in the ER (Birk

et al., 2009; Ito and Jameson, 1997; Ito et al., 1999; Si-Hoe et al., 2000). In contrast, normal NPII was unde-

tectable in ERACs of FNDI mice. This finding does not exclude the possibility that normal NPII exists in

ERACs, given that the anti-normal NPII antibody PS41 can only detect the normal AVP precursor where

it is sufficiently concentrated. This is supported by the findings in wild-type mice in which PS41 could detect

normal NPII in the dense-core neurosecretory granules but not in the ER.

In this study, we showed that lysosomes were fused to the ERAC membrane and that LAMP2 as well as

cathepsin D were found within ERACs. While previous studies also suggested that a lysosome might be

involved in the degradation of mutant AVP precursor proteins (Castino et al., 2005; Davies and Murphy,

2002), our data suggest that mutant protein aggregates are degraded within the ER by autophagic-lyso-

somal machinery. A clear difference betweenmacro-ER-phagy and ERAC degradation, as shown in the pre-

sent study, is that ERAC degradation occurs in a compartment derived from the ER that maintains connec-

tion to the ER, whereas in macro-ER-phagy, the ER contents are degraded together with the ER itself

following the complete sequestration by phagophores. We showed that aggregates were surrounded

by membranes of high electron density based on SEM. Similarly, a previous study reported that the mem-

branes of phagophores showed high electron density when observed by SBF-SEM, although the compo-

sition of this high density material has yet to be determined (Arai andWaguri, 2019). Our data also revealed

that LC3 was expressed around the aggregates and that rapamycin, which is known to accelerate the for-

mation of phagophores (Vakifahmetoglu-Norberg et al., 2015), increased the degradation of aggregates

surrounded by the membranes. Combined, these data suggest that the membranes possess characteris-

tics of phagophores (Kabeya et al., 2000; Mizushima and Komatsu, 2011; Mizushima et al., 2004) and indi-

cate that ERAC degradation is different to micro-ER-phagy. To the best of our knowledge, this is the first

report showing that accumulated aggregates are degraded within specialized compartments of the ER.

While previous in vitro studies suggested that phagophores originate from the ER (Axe et al., 2008; Graef

et al., 2013; Hamasaki et al., 2013; Hayashi-Nishino et al., 2009; Uemura et al., 2014), our data clearly show

that this is also the case for the phagophore-like membrane surrounding ERACs to which the lysosomes

fuse to form the autolysosome-like structures.

SBF-SEM analyses suggested that lysosomes were fused to the ERACs via ERAC protrusions in some AVP

neurons. Given that not only protein aggregates but also the lysosomal acid hydrolase cathepsin D is local-

ized exclusively in ERACs, some mechanisms should exist by which protein aggregates and lysosome-

relatedmolecules are confined to ERACs in order to protect the remainder of the intact ER lumen. The elec-

tron-lucent areas shown in the electron microscopic analyses have also been observed in our previous

studies (Hayashi et al., 2009). Here, we showed that BiP is expressed in these electron-lucent areas.

Thus, it is possible that molecules related to ERAC formation and confinement of aggregates as well as

lysosomal acid hydrolases to the ERACs might be present in this region, although further studies are

required to clarify the underlying mechanisms.

We previously reported that macroautophagy or cell death was not observed as long as mutant NPII was

confined to the ERACs in FNDI mice with free access to water (Hagiwara et al., 2014). Conversely, ERAC
iScience 23, 101648, October 23, 2020 9
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formation was disrupted and mutant NPII aggregates were spread throughout the ER lumen after intermit-

tent water deprivation, leading to autophagy-associated cell death of AVP neurons in FNDI mice (Hagiwara

et al., 2014, 2019). Taken together, it seems that ERAC formation as well as degradation of mutant proteins

within ERACs is essential for protecting AVP neurons from cell death in FNDI.

In general, misfolded or unfolded proteins in the ER are targeted for ERAD, in which substrates are trans-

located from the ER to the cytosol and degraded by UPS (Guerriero and Brodsky, 2012; Qi et al., 2017;

Smith et al., 2011). In AVP neurons, wild-type AVP precursors are reported to undergo proteasomal degra-

dation (Friberg et al., 2004). Furthermore, a recent study demonstrated that deficiency of the Sel1L-Hrd1

protein complex, a principal ER-resident E3 ligase in mammalian ERAD, caused marked retention and ag-

gregation of wild-type AVP precursors in the ER, resulting in polyuria due to AVP deficiency (Shi et al., 2017).

While these findings indicate that ERAD is essential to the cellular function of AVP neurons, our present

data showed that, in addition to ERAD, there exists another mechanism by which protein aggregates could

be degraded without translocation from the ER to the cytosol in AVP neurons.

In conclusion, our data demonstrate that mutant proteins undergo autophagic-lysosomal degradation

within ERACs, without isolation or translocation from the ER, in AVP neurons of FNDI mice.

Limitations of the Study

It is unclear from this study how aggregates and lysosomal acid hydrolases are confined to the ERACs.

Furthermore, the roles of the protrusions in the ERACs and the electron-lucent areas around the aggre-

gates also remain to be determined.

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Hiroshi Arima (arima105@med.nagoya-u.ac.jp).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

This study did not generate datasets or code.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101648.

ACKNOWLEDGMENTS

The authors thank Dr. NoboruMizushima (Tokyo University) for providing the GFP-LC3 transgenic mice and

Atsuko Imai, Nobuko Hattori (National Institute for Physiological Sciences), and Michiko Yamada for their

helpful technical assistance. This work was supported by JSPS KAKENHI Grant Number JP15K19530 (to

D.H.); JP16H06280 (to D.H. and H.S.), Grant-in-Aid for Scientific Research on Innovative Areas — Platforms

for Advanced Technologies and Research Resources ‘‘Advanced Bioimaging Support’’; Alexander von

Humboldt Foundation Research Fellowship (to D.H.); the Acceleration Program for Intractable Diseases

Research utilizing Disease-specific iPS cells (to H.S.) of the Research Center Network for Realization of

Regenerative Medicine from the Japanese Agency for Medical Research and Development (AMED); Su-

zuken Memorial Foundation (to H.A.); and Cooperative Study Programs of National Institute for Physiolog-

ical Sciences (to H.A. and N.O.).

AUTHOR CONTRIBUTIONS

T. Miyata, D.H., H. Sakamoto, N.O., and H.A. designed the studies and wrote the manuscript. T. Miyata,

Y.H., T. Miwata, Y.K., J.K., H.O., K.M., H.T., H. Suga, T.K., M.S., T.O., Y.I., S.I., and R.B. performed most
10 iScience 23, 101648, October 23, 2020

mailto:arima105@med.nagoya-u.ac.jp
https://doi.org/10.1016/j.isci.2020.101648


ll
OPEN ACCESS

iScience
Article
of the experiments. N.K. and H. Sakamoto performed the immunoelectron microscopy experiments. M.M.

and N.O. performed the SBF-SEM analysis. All authors discussed the results and commented on the

manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: June 2, 2020

Revised: September 8, 2020

Accepted: October 2, 2020

Published: October 23, 2020
REFERENCES

Arai, R., and Waguri, S. (2019). Improved electron
microscopy fixation methods for tracking
autophagy-associated membranes in cultured
mammalian cells. Methods Mol. Biol. 1880,
211–221.

Arima, H., Azuma, Y., Morishita, Y., and Hagiwara,
D. (2016). Central diabetes insipidus. Nagoya J.
Med. Sci. 78, 349–358.

Axe, E.L., Walker, S.A., Manifava, M., Chandra, P.,
Roderick, H.L., Habermann, A., Griffiths, G., and
Ktistakis, N.T. (2008). Autophagosome formation
from membrane compartments enriched in
phosphatidylinositol 3-phosphate and
dynamically connected to the endoplasmic
reticulum. J. Cell Biol. 182, 685–701.

Babey, M., Kopp, P., and Robertson, G.L. (2011).
Familial forms of diabetes insipidus: clinical and
molecular characteristics. Nat. Rev. Endocrinol. 7,
701–714.

Ben-Barak, Y., Russell, J.T., Whitnall, M., Ozato,
K., and Gainer, H. (1984). Phylogenetic cross-
reactivities of monoclonal antibodies produced
against rat neurophysin. Cell Mol. Neurobiol. 4,
339–349.

Ben-Barak, Y., Russell, J.T., Whitnall, M.H., Ozato,
K., and Gainer, H. (1985). Neurophysin in the
hypothalamo-neurohypophysial system. I.
Production and characterization of monoclonal
antibodies. J. Neurosci. 5, 81–97.

Birk, J., Friberg, M.A., Prescianotto-Baschong, C.,
Spiess, M., and Rutishauser, J. (2009). Dominant
pro-vasopressin mutants that cause diabetes
insipidus form disulfide-linked fibrillar
aggregates in the endoplasmic reticulum. J. Cell
Sci. 122, 3994–4002.

Bisset, G.W., and Chowdrey, H.S. (1988). Control
of release of vasopressin by neuroendocrine
reflexes. Q. J. Exp. Physiol. 73, 811–872.

Braakman, I., and Bulleid, N.J. (2011). Protein
folding and modification in the mammalian
endoplasmic reticulum. Annu. Rev. Biochem. 80,
71–99.

Brownstein, M.J., Russell, J.T., and Gainer, H.
(1980). Synthesis, transport, and release of
posterior pituitary hormones. Science 207,
373–378.

Burbach, J.P., Luckman, S.M., Murphy, D., and
Gainer, H. (2001). Gene regulation in the
magnocellular hypothalamo-neurohypophysial
system. Physiol. Rev. 81, 1197–1267.

Castino, R., Davies, J., Beaucourt, S., Isidoro, C.,
and Murphy, D. (2005). Autophagy is a prosurvival
mechanism in cells expressing an autosomal
dominant familial neurohypophyseal diabetes
insipidus mutant vasopressin transgene. FASEB J
19, 1021–1023.

Chiang, W.C., Messah, C., and Lin, J.H. (2012).
IRE1 directs proteasomal and lysosomal
degradation of misfolded rhodopsin. Mol. Biol.
Cell 23, 758–770.

Christensen, J.H., and Rittig, S. (2006). Familial
neurohypophyseal diabetes insipidus–an update.
Semin. Nephrol. 26, 209–223.

Cunningham, C.N., Williams, J.M., Knupp, J.,
Arunagiri, A., Arvan, P., and Tsai, B. (2019). Cells
deploy a two-pronged strategy to rectify
misfolded proinsulin aggregates. Mol. Cell 75,
442–456.e4.

Davies, J., and Murphy, D. (2002). Autophagy in
hypothalamic neurones of rats expressing a
familial neurohypophysial diabetes insipidus
transgene. J. Neuroendocrinol. 14, 629–637.

Edwards, C.R., Kitau, M.J., Chard, T., and Besser,
G.M. (1973). Vasopressin analogue DDAVP in
diabetes insipidus: clinical and laboratory
studies. Br. Med. J. 3, 375–378.

Forrester, A., De Leonibus, C., Grumati, P.,
Fasana, E., Piemontese, M., Staiano, L., Fregno, I.,
Raimondi, A., Marazza, A., Bruno, G., et al. (2019).
A selective ER-phagy exerts procollagen quality
control via a Calnexin-FAM134B complex. EMBO
J. 38, e99847.

Fregno, I., Fasana, E., Bergmann, T.J., Raimondi,
A., Loi, M., Solda, T., Galli, C., D’Antuono, R.,
Morone, D., Danieli, A., et al. (2018). ER-to-
lysosome-associated degradation of
proteasome-resistant ATZ polymers occurs via
receptor-mediated vesicular transport. EMBO J.
37, e99259.

Fregno, I., and Molinari, M. (2018). Endoplasmic
reticulum turnover: ER-phagy and other flavors in
selective and non-selective ER clearance.
F1000Res 7, 454.

Friberg, M.A., Spiess, M., and Rutishauser, J.
(2004). Degradation of wild-type vasopressin
precursor and pathogenic mutants by the
proteasome. J. Biol. Chem. 279, 19441–19447.
Gidalevitz, T., Stevens, F., and Argon, Y. (2013).
Orchestration of secretory protein folding by ER
chaperones. Biochim. Biophys. Acta 1833, 2410–
2424.

Graef, M., Friedman, J.R., Graham, C., Babu, M.,
and Nunnari, J. (2013). ER exit sites are physical
and functional core autophagosome biogenesis
components. Mol. Biol. Cell 24, 2918–2931.

Granell, S., Baldini, G., Mohammad, S., Nicolin,
V., Narducci, P., and Storrie, B. (2008).
Sequestration of mutated alpha1-antitrypsin into
inclusion bodies is a cell-protectivemechanism to
maintain endoplasmic reticulum function. Mol.
Biol. Cell 19, 572–586.

Guerriero, C.J., and Brodsky, J.L. (2012). The
delicate balance between secreted protein
folding and endoplasmic reticulum-associated
degradation in human physiology. Physiol. Rev.
92, 537–576.

Hagen, M.C., Murrell, J.R., Delisle, M.B.,
Andermann, E., Andermann, F., Guiot, M.C., and
Ghetti, B. (2011). Encephalopathy with
neuroserpin inclusion bodies presenting as
progressive myoclonus epilepsy and associated
with a novel mutation in the Proteinase Inhibitor
12 gene. Brain Pathol. 21, 575–582.

Hagiwara, D., Arima, H., Morishita, Y., Wenjun, L.,
Azuma, Y., Ito, Y., Suga, H., Goto, M., Banno, R.,
Sugimura, Y., et al. (2014). Arginine vasopressin
neuronal loss results from autophagy-associated
cell death in a mouse model for familial
neurohypophysial diabetes insipidus. Cell Death
Dis. 5, e1148.

Hagiwara, D., Grinevich, V., and Arima, H. (2019).
A novel mechanism of autophagy-associated cell
death of vasopressin neurons in familial
neurohypophysial diabetes insipidus. Cell Tissue
Res. 375, 259–266.

Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A.,
Yamamoto, A., Fujita, N., Oomori, H., Noda, T.,
Haraguchi, T., Hiraoka, Y., et al. (2013).
Autophagosomes form at ER-mitochondria
contact sites. Nature 495, 389–393.

Han, Y., Wang, S., Wang, Y., and Zeng, S. (2019).
IGF-1 inhibits apoptosis of porcine primary
granulosa cell by targeting degradation of
Bim(EL). Int. J. Mol. Sci. 20, 5356.

Hayashi, M., Arima, H., Ozaki, N., Morishita, Y.,
Hiroi, M., Nagasaki, H., Kinoshita, N., Ueda, M.,
Shiota, A., and Oiso, Y. (2009). Progressive
iScience 23, 101648, October 23, 2020 11

http://refhub.elsevier.com/S2589-0042(20)30840-3/sref1
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref1
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref1
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref1
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref1
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref2
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref2
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref2
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref3
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref3
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref3
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref3
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref3
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref3
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref3
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref4
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref4
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref4
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref4
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref5
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref5
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref5
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref5
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref5
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref6
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref6
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref6
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref6
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref6
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref7
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref7
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref7
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref7
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref7
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref7
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref8
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref8
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref8
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref9
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref9
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref9
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref9
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref10
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref10
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref10
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref10
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref11
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref11
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref11
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref11
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref12
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref12
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref12
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref12
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref12
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref12
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref13
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref13
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref13
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref13
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref14
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref14
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref14
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref15
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref15
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref15
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref15
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref15
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref16
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref16
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref16
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref16
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref17
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref17
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref17
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref17
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref18
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref18
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref18
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref18
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref18
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref18
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref19
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref19
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref19
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref19
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref19
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref19
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref19
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref20
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref20
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref20
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref20
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref21
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref21
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref21
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref21
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref22
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref22
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref22
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref22
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref23
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref23
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref23
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref23
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref24
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref24
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref24
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref24
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref24
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref24
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref25
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref25
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref25
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref25
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref25
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref26
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref26
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref26
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref26
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref26
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref26
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref26
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref27
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref27
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref27
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref27
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref27
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref27
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref27
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref28
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref28
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref28
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref28
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref28
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref29
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref29
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref29
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref29
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref29
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref30
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref30
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref30
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref30
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref31
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref31
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref31


ll
OPEN ACCESS

iScience
Article
polyuria without vasopressin neuron loss in a
mouse model for familial neurohypophysial
diabetes insipidus. Am. J. Physiol. Regul. Integr.
Comp. Physiol. 296, R1641–R1649.

Hayashi-Nishino, M., Fujita, N., Noda, T.,
Yamaguchi, A., Yoshimori, T., and Yamamoto, A.
(2009). A subdomain of the endoplasmic
reticulum forms a cradle for autophagosome
formation. Nat. Cell Biol. 11, 1433–1437.

Hetz, C. (2012). The unfolded protein response:
controlling cell fate decisions under ER stress and
beyond. Nat. Rev. Mol. Cell Biol. 13, 89–102.

Hiroi, M., Morishita, Y., Hayashi, M., Ozaki, N.,
Sugimura, Y., Nagasaki, H., Shiota, A., Oiso, Y.,
and Arima, H. (2010). Activation of vasopressin
neurons leads to phenotype progression in a
mouse model for familial neurohypophysial
diabetes insipidus. Am. J. Physiol. Regul. Integr.
Comp. Physiol. 298, R486–R493.

Ito, D., Yagi, T., Ikawa, M., and Suzuki, N. (2012).
Characterization of inclusion bodies with
cytoprotective properties formed by
seipinopathy-linked mutant seipin. Hum. Mol.
Genet. 21, 635–646.

Ito, M., and Jameson, J.L. (1997). Molecular basis
of autosomal dominant neurohypophyseal
diabetes insipidus. Cellular toxicity caused by the
accumulation of mutant vasopressin precursors
within the endoplasmic reticulum. J. Clin. Invest.
99, 1897–1905.

Ito, M., Yu, R.N., and Jameson, J.L. (1999). Mutant
vasopressin precursors that cause autosomal
dominant neurohypophyseal diabetes insipidus
retain dimerization and impair the secretion of
wild-type proteins. J. Biol. Chem. 274, 9029–9037.

Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto,
A., Kirisako, T., Noda, T., Kominami, E., Ohsumi,
Y., and Yoshimori, T. (2000). LC3, a mammalian
homologue of yeast Apg8p, is localized in
autophagosome membranes after processing.
EMBO J. 19, 5720–5728.

Kaufman, R.J. (1999). Stress signaling from the
lumen of the endoplasmic reticulum:
coordination of gene transcriptional and
translational controls. Genes Dev. 13, 1211–1233.

Ludwig, M., and Leng, G. (2006). Dendritic
peptide release and peptide-dependent
behaviours. Nat. Rev. Neurosci. 7, 126–136.
12 iScience 23, 101648, October 23, 2020
Mizushima, N., and Komatsu, M. (2011).
Autophagy: renovation of cells and tissues. Cell
147, 728–741.

Mizushima, N., Yamamoto, A., Matsui, M.,
Yoshimori, T., and Ohsumi, Y. (2004). In vivo
analysis of autophagy in response to nutrient
starvation using transgenic mice expressing a
fluorescent autophagosome marker. Mol. Biol.
Cell 15, 1101–1111.

Morishita, Y., Arima, H., Hiroi, M., Hayashi, M.,
Hagiwara, D., Asai, N., Ozaki, N., Sugimura, Y.,
Nagasaki, H., Shiota, A., et al. (2011). Poly(A) tail
length of neurohypophysial hormones is
shortened under endoplasmic reticulum stress.
Endocrinology 152, 4846–4855.

Omari, S., Makareeva, E., Roberts-Pilgrim, A.,
Mirigian, L., Jarnik, M., Ott, C., Lippincott-
Schwartz, J., and Leikin, S. (2018). Noncanonical
autophagy at ER exit sites regulates procollagen
turnover. Proc. Natl. Acad. Sci. U S A 115, E10099–
e10108.

Pow, D.V., and Morris, J.F. (1989). Dendrites of
hypothalamic magnocellular neurons release
neurohypophysial peptides by exocytosis.
Neuroscience 32, 435–439.

Qi, L., Tsai, B., and Arvan, P. (2017). New insights
into the physiological role of endoplasmic
reticulum-associated degradation. Trends Cell
Biol. 27, 430–440.

Saliba, R.S., Munro, P.M., Luthert, P.J., and
Cheetham, M.E. (2002). The cellular fate of
mutant rhodopsin: quality control, degradation
and aggresome formation. J. Cell Sci. 115, 2907–
2918.

Sausville, E., Carney, D., and Battey, J. (1985). The
human vasopressin gene is linked to the oxytocin
gene and is selectively expressed in a cultured
lung cancer cell line. J. Biol. Chem. 260, 10236–
10241.

Schroder, M., and Kaufman, R.J. (2005). ER stress
and the unfolded protein response. Mutat. Res.
569, 29–63.

Schultz, M.L., Krus, K.L., Kaushik, S., Dang, D.,
Chopra, R., Qi, L., Shakkottai, V.G., Cuervo, A.M.,
and Lieberman, A.P. (2018). Coordinate
regulation of mutant NPC1 degradation by
selective ER autophagy and MARCH6-
dependent ERAD. Nat. Commun. 9, 3671.
Shi, G., Somlo, D.R.M., Kim, G.H., Prescianotto-
Baschong, C., Sun, S., Beuret, N., Long, Q.,
Rutishauser, J., Arvan, P., Spiess, M., et al. (2017).
ER-associated degradation is required for
vasopressin prohormone processing and
systemic water homeostasis. J. Clin. Invest. 127,
3897–3912.

Si-Hoe, S.L., De Bree, F.M., Nijenhuis, M., Davies,
J.E., Howell, L.M., Tinley, H., Waller, S.J., Zeng,
Q., Zalm, R., Sonnemans, M., et al. (2000).
Endoplasmic reticulum derangement in
hypothalamic neurons of rats expressing a
familial neurohypophyseal diabetes insipidus
mutant vasopressin transgene. FASEB J. 14,
1680–1684.

Smith, M., and Wilkinson, S. (2017). ER
homeostasis and autophagy. Essays Biochem. 61,
625–635.

Smith, M.H., Ploegh, H.L., and Weissman, J.S.
(2011). Road to ruin: targeting proteins for
degradation in the endoplasmic reticulum.
Science 334, 1086–1090.

Song, S., Tan, J., Miao, Y., and Zhang, Q. (2018).
Crosstalk of ER stress-mediated autophagy and
ER-phagy: involvement of UPR and the core
autophagy machinery. J. Cell Physiol. 233, 3867–
3874.

Uemura, T., Yamamoto, M., Kametaka, A., Sou,
Y.S., Yabashi, A., Yamada, A., Annoh, H.,
Kametaka, S., Komatsu, M., andWaguri, S. (2014).
A cluster of thin tubular structures mediates
transformation of the endoplasmic reticulum to
autophagic isolation membrane. Mol. Cell Biol.
34, 1695–1706.

Vakifahmetoglu-Norberg, H., Xia, H.G., and
Yuan, J. (2015). Pharmacologic agents targeting
autophagy. J. Clin. Invest. 125, 5–13.

Wang, S., and Kaufman, R.J. (2012). The impact of
the unfolded protein response on human
disease. J. Cell Biol. 197, 857–867.

Wilkinson, S. (2019). ER-phagy: shaping up and
destressing the endoplasmic reticulum. FEBS J.
286, 2645–2663.

http://refhub.elsevier.com/S2589-0042(20)30840-3/sref31
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref31
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref31
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref31
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref32
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref32
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref32
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref32
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref32
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref33
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref33
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref33
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref34
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref34
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref34
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref34
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref34
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref34
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref34
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref35
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref35
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref35
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref35
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref35
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref36
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref36
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref36
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref36
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref36
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref36
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref37
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref37
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref37
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref37
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref37
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref38
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref38
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref38
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref38
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref38
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref38
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref39
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref39
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref39
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref39
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref40
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref40
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref40
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref41
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref41
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref41
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref42
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref42
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref42
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref42
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref42
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref42
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref43
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref43
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref43
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref43
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref43
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref43
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref44
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref44
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref44
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref44
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref44
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref44
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref45
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref45
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref45
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref45
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref46
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref46
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref46
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref46
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref47
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref47
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref47
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref47
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref47
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref48
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref48
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref48
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref48
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref48
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref49
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref49
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref49
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref50
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref50
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref50
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref50
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref50
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref50
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref51
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref51
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref51
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref51
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref51
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref51
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref51
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref52
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref52
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref52
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref52
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref52
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref52
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref52
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref52
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref53
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref53
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref53
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref54
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref54
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref54
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref54
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref55
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref55
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref55
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref55
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref55
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref56
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref56
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref56
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref56
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref56
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref56
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref56
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref57
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref57
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref57
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref58
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref58
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref58
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref59
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref59
http://refhub.elsevier.com/S2589-0042(20)30840-3/sref59


iScience, Volume 23
Supplemental Information
Degradation of Mutant Protein Aggregates

within the Endoplasmic Reticulum

of Vasopressin Neurons

Takashi Miyata, Daisuke Hagiwara, Yuichi Hodai, Tsutomu Miwata, Yohei
Kawaguchi, Junki Kurimoto, Hajime Ozaki, Kazuki Mitsumoto, Hiroshi
Takagi, Hidetaka Suga, Tomoko Kobayashi, Mariko Sugiyama, Takeshi Onoue, Yoshihiro
Ito, Shintaro Iwama, Ryoichi Banno, Mami Matsumoto, Natsuko Kawakami, Nobuhiko
Ohno, Hirotaka Sakamoto, and Hiroshi Arima



 

Supplemental Figures 

 

Figure S1. Luminal connections between ERACs and the intact ER in AVP neurons of 

FNDI mice, Related to Figure 2 

The 3D reconstructed ERAC (A, red) and intact ER (A, blue) was cut at the plane of two 

angularly connected electron microscopic images (A) in order to observe the connection 

between an ERAC and the intact ER shown in Figure 2B. The cutting plane is shown as 

a montage image of the two angularly connected electron microscopic images (B-D), one 

of which corresponds to an obliquely cut slice montaged from the original SBF-SEM 

images. In the cutting plane image, the connecting line of the two electron microscopic 

images is shown as an orange line (B), and the luminal areas are colored red (D) to show 

the connection (D, arrow). Scale bars 500 nm. 

  



 

 

  



 

Figure S2. An ERAC containing a relatively small amount of aggregates which fuses with 

lysosomes in AVP neurons of FNDI mice, Related to Figure 2 

(A-D) Serial images of an ERAC containing a relatively small amount of aggregates (A1-

9, red) and its 3D reconstruction (B) show connections (A1 and 2, arrowhead) with the 

intact ER (A1 and 2, blue) and the fusion (A6 and 8, white arrowheads) with lysosomes 

(A6 and 8, purple). Serial images of another ERAC containing a relatively small amount 

of aggregates (C1-6, red) and its 3D reconstruction (D) show the fusion (C1-6, white 

arrowheads) with a lysosome (C1-6, purple). The numbers in the upper-right corners show 

the respective slice number within the electron microscopic image stack. Scale bars: 500 

nm. See also Videos S3 and 4. 

  



 

 

Figure S3. Ultrastructural localization of normal NPII and BiP in AVP neurons of wild-

type mice, Related to Figures 3 and 4 

(A-E) Immunoelectron microscopic analysis of BiP (10 nm gold particles, black 

arrowheads) and normal NPII (15 nm gold particles, white arrowheads) in AVP neurons 

of the SON (A-C) and in the posterior pituitary (D and E) of wild-type mice. BiP-

immunoreactivity is associated with the membranous structures of rough ER (B) and 

normal NPII is found in neurosecretory vesicles (C). Higher magnification images of the 

boxed areas in A and D are shown in B, C, and E, respectively. Scale bars: 500 nm (A and 

D) and 100 nm (B, C, and E). 

  



 

 

Figure S4. Ultrastructural localization of BiP in the intact ER in AVP neurons of FNDI 

mice, Related to Figure 4 

Immunoelectron microscopic analysis for BiP (10 nm gold particles) in AVP neurons 

showed that BiP-immunoreactivity is associated with the membranous structures of rough 

ER in the SON of FNDI mice. Scale bars: 500 nm.  

  



 

 

Figure S5. Localization of GFP in AVP neurons of GFP-LC3 mice, Related to Figure 4 

(A-C) Immunofluorescence staining for GFP-LC3 (green) and normal NPII (magenta) in 

the SON of GFP-LC3 mice. Higher magnification images of the boxed areas in the left 

panels are shown at right. Scale bars: 50 m (left panels) and 10 m (right panels).  

  



 

 

Figure S6. Localization of LAMP2 or cathepsin D in AVP neurons of wild-type mice, 

Related to Figure 5 

(A-F) Immunofluorescence staining for normal NPII (green) and LAMP2 or cathepsin D 

(magenta) in the SON of wild-type mice. Higher magnification images of the boxed areas 

in the left panels are shown at right. Scale bars: 50 m (left panels) and 10 m (right 

panels). 

  



 

 

Figure S7. LC3 conversion (LC3-Ⅰ to LC3-Ⅱ) in the hypothalamus of wild-type mice 

treated with the autophagy inducer rapamycin or the lysosome inhibitor chloroquine, 

Related to Figure 6 

(A and B) Representative immunoblot of protein lysates from the hypothalamus of wild-

type mice in the control and rapamycin (Rapa, A) or chloroquine (CQ, B) groups 

immunolabeled for LC3. The adjacent bar graph displays the ratio of LC3II/LC3I 

densitometric signals relative to that of control mice. Results are expressed as means ± 

SE; n = 4 animals per group. 

 

  



 

Transparent Methods 

 

Animals 

FNDI mice heterozygous for the mutant Avp gene (Cys98stop) were generated 

previously (Hayashi et al., 2009). All FNDI mice in the present study were backcrossed 

over 15 generations onto the C57BL/6J background. C57BL/6J mice were purchased 

from Chubu Science Materials (Nagoya, Japan). GFP-LC3 transgenic mice (strain GFP-

LC3#53) harboring a rat LC3-enhanced GFP fusion construct under the control of the 

chicken -actin promoter with the cytomegalovirus immediate early enhancer 

(Mizushima et al., 2004) were obtained from the RIKEN BioResource Center (Tsukuba, 

Japan). FNDI mice were crossed with GFP-LC3 transgenic mice to generate FNDI/GFP-

LC3 mice. Mice were maintained under controlled conditions (23.0 ± 0.5°C, lights on 

09:00 to 21:00), and male mice were used in the experiments. All procedures were 

approved by the Animal Experimentation Committee of the Nagoya University Graduate 

School of Medicine and performed in accordance with institutional guidelines for animal 

care and use. 

 

Brain collection for immunohistochemistry 

Three-month-old male FNDI mice, their wild-type littermates, FNDI/GFP-LC3 mice, 

and GFP-LC3 mice were deeply anesthetized and transcardially perfused with a cold 

fixative containing 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (pH 7.4). After 

fixation, brains were immediately removed and immersed in the same fixative for 3 h at 

4°C. Brains were kept in PBS containing 10-20% sucrose at 4°C for cryoprotection. They 

were then embedded in Tissue-Tek O.C.T. compound (Sakura Finetechnical, Tokyo, 



 

Japan) and stored at −80°C until sectioning. Brains were cut into 16-m sections on a 

cryostat at −20°C, thaw-mounted on Superfrost Plus microscope slides (Matsunami Glass 

Ind., Osaka, Japan), and stored at −80°C until immunohistochemical analysis. 

 

Antibodies 

Primary antibodies used for immunofluorescence staining in the current study 

included: rabbit anti-mutant NPII (Cys98stop) (Hayashi et al., 2009), mouse anti-normal 

NPII (PS41; kindly provided by Dr. H Gainer, National Institutes of Health, Bethesda, 

MD, USA) (Ben-Barak et al., 1984; Ben-Barak et al., 1985), rabbit anti-BiP (#ab21685; 

Abcam, Cambridge, UK), rat anti-LAMP2 (#ab13524; Abcam), goat anti-cathepsin D 

(#sc6486; Santa Cruz Biotechnology, Dallas, TX, USA), and chicken anti-GFP 

(#ab13970; Abcam). The following secondary antibodies were used: Alexa Fluor 488-

conjugated donkey anti-rabbit IgG (H+L) highly cross-adsorbed (#A-21206; Invitrogen, 

San Diego, CA, USA), Alexa Fluor 488-conjugated goat anti-chicken IgY (H+L) (#A-

11039; Invitrogen), Alexa Fluor 488-conjugated donkey anti-mouse IgG (H+L) highly 

cross-adsorbed (#A-21202; Invitrogen), Alexa Fluor 546-conjugated donkey anti-mouse 

IgG (H+L) highly cross-adsorbed (#A-11036; Invitrogen), Alexa Fluor 546-conjugated 

F(ab’)2-goat anti-rabbit IgG (H+L) cross-adsorbed (#A-11071; Invitrogen), Alexa Fluor 

546-conjugated goat anti-rat IgG (H+L) cross-adsorbed (#A-11081; Invitrogen), and 

Alexa Fluor 546-conjugated donkey anti-goat IgG (H+L) cross-adsorbed (#A-11056; 

Invitrogen). Nuclei were stained with DAPI (#340-07971; DOJINDO, Kumamoto, Japan). 

 

Immunohistochemistry 

Frozen sections were washed with PBS for 15 min and then incubated with rabbit anti-



 

mutant NPII antibody (1:1000) in PBS with 0.3% Triton X-100 and 1% normal goat 

serum overnight at 4°C. After rinsing the sections with PBS, the primary antibody was 

probed using biotinylated goat anti-rabbit IgG (H+L) (1:200, #BA-1000; Vector 

Laboratories, Burlingame, CA, USA) for 3 h at room temperature. The sections were 

washed in PBS and then incubated with avidin-biotin complex solution (1:100, Vectastain 

ABC kit, #PK-4000; Vector Laboratories) for 90 min at room temperature before 

immersion in PBS containing 0.1% 3,3’-diaminobenzidine dihydrochloride (Sigma-

Aldrich, St. Louis, MO, USA). Antibody-binding sites were visualized upon addition of 

0.004% hydrogen peroxide. The number and diameter of inclusion bodies in the SON 

were measured using an Olympus DP73 digital camera system and an Olympus BX51 

microscope equipped with cellSens Software (Olympus, Tokyo, Japan). The best-

matched slices at 0.70 mm caudal from the bregma, according to the brain atlas [The 

Mouse Brain in Stereotaxic Coordinates, Academic Press, New York, 2000.], were 

selected from each mouse for analysis. The number of inclusion bodies per SON were 

counted, and the mean values for each mouse were subjected to statistical analyses. Five 

to seven mice per group were used for this analysis. For immunofluorescence staining, 

sections were incubated with these primary antibodies - rabbit anti-mutant NPII (1:1000), 

mouse anti-normal NPII (1:100), rat anti-LAMP2 (1:100), goat anti-cathepsin D (1:100) 

and chicken anti-GFP (1:10000) - overnight at 4 °C. The sections were then treated with 

a 1:1000 dilution of secondary antibodies for 1 h at room temperature. For double-

immunofluorescence staining using the same host primary antibodies, rabbit anti-BiP and 

mutant NPII antibodies, sections were first incubated with rabbit anti-BiP antibody 

(1:600) overnight at 4°C and treated with Alexa Fluor 546-conjugated F(ab’)2-goat anti-

rabbit IgG (H+L) cross-adsorbed (1:100) for 1 h at room temperature. After washing in 



 

PBS, the sections were next incubated with rabbit anti-mutant NPII antibody (1:2000) 

overnight at 4°C and treated with Alexa Fluor 488-conjugated donkey anti-rabbit IgG 

(H+L) highly cross-adsorbed (1:2000) for 1 h at room temperature. Fluorescence images 

were acquired with a laser-scanning confocal microscope (TiEA1R; Nikon Instech, Tokyo, 

Japan) or a fluorescence microscope (BZ-9000; Keyence, Osaka, Japan) and processed 

using Adobe Photoshop CS5 (Adobe Systems, San Jose, CA, USA). Three mice per 

experiment were used for the immunofluorescence analyses. 

 

SBF-SEM 

SBF-SEM analyses were performed as described previously with slight modifications 

(Matsumoto et al., 2019). Briefly, three-month-old male FNDI mice were deeply 

anesthetized and transcardially perfused with 4% PFA and 2.5% glutaraldehyde in 0.1 M 

phosphate buffer (pH 7.4). After fixation, brains were immediately removed and 

immersed overnight at 4°C in the same fixative. Brains were cut into 100-m sections on 

a Vibratome (VT1200 S; Leica Biosystems, Wetzlar, Germany). Tissues were treated with 

2% OsO4 in 1.5% K4[Fe(CN)6] for 1 h at 4℃, and subsequently 1% thiocarbohydrazide 

for 20 min, and 2% OsO4 for 30 min at room temperature. Thereafter, the tissues were 

treated with 1% uranyl acetate at 4℃ overnight and lead aspartate solution for 30 min at 

65℃. The tissues were dehydrated in a graded series of ethanol (60, 80, 90, 95%), treated 

with dehydrated acetone, and embedded in Durcupan resin containing Ketjen black 

powder (5%) for 48 h at 60℃ to ensure polymerization. SBF-SEM for the SON was 

performed using a SigmaVP scanning electron microscope (Carl Zeiss) equipped with a 

3View in-chamber ultramicrotome system (Gatan). Serial image sequences were 

generated at 50-nm steps at a resolution of 4.8-5.7 nm per pixel. Sequential images were 



 

processed with FIJI. Segmentation and three-dimensional reconstruction were performed 

using Microscopy Image Browser (http://mib.helsinki.fi) (Belevich et al., 2016) and 

Amira software (FEI Visualization Science Group, Hillsboro, OR, USA). Two mice were 

used for the SBF-SEM analyses. 

 

Post-embedding immunoelectron microscopy 

Three-month-old male FNDI mice, their wild-type littermates, and FNDI/GFP-LC3 

mice were deeply anesthetized and transcardially perfused with 4% PFA and 0.1% 

glutaraldehyde in 0.1 M phosphate buffer (pH 7.4). Brains and neurohypophyses were 

immediately removed and immersed in the same fixative for 3 h at room temperature or 

overnight at 4ºC. Preparations were dehydrated through increasing concentrations of 

methanol, embedded in LR Gold resin (Electron Microscopy Sciences, PA, USA), and 

polymerized under UV lamps at –20ºC for 24 h. Ultrathin sections (70 nm in thickness) 

were collected on nickel grids coated with a collodion film, rinsed with PBS several times, 

then incubated with 2% normal goat serum and 2% BSA in 50 mM Tris(hydroxymethyl)-

aminomethane-buffered saline (TBS; pH 8.2) for 30 min to block non-specific binding. 

The sections from FNDI mice were then incubated with either a 1:1,000 dilution of rabbit 

anti-mutant NPII antibody or a 1:60 dilution of rabbit anti-BiP antibody and a 1:200 

dilution of mouse anti-normal NPII antibody (Castel et al., 1986) for 1 h at room 

temperature in the blocking solution. The sections were then washed with PBS, then 

incubated with a 1:50 dilution of a goat antibody against rabbit IgG conjugated to 10 nm 

gold particles (BBI Solutions, Cardiff, UK) and a goat antibody against mouse IgG 

conjugated to 15 nm gold particles (BBI Solutions) for 1 h at room temperature. The rat 

anti-LAMP2 antibody or the goat anti-cathepsin D antibody was also used both at 1:20 

http://mib.helsinki.fi/


 

overnight at 4ºC in Can Get Signal Solution 1 (Toyobo, Tokyo, Japan). After the sections 

were washed with PBS, then incubated with a 1:50 dilution of either a goat antibody 

against rat IgG conjugated to 10 nm gold particles (Sigma, St. Louis, MO, USA) or a 

rabbit antibody against goat IgG conjugated to 10 nm gold particles (BBI Solutions) for 

1 h at room temperature, respectively. To detect the GFP signals in tissues from 

FNDI/GFP-LC3 mice, the sections were incubated with a 1:20 dilution of rabbit anti-GFP 

antibody (Cell Signaling Technology Japan, Tokyo, Japan) for detection of GFP antigens 

to intensify the GFP-LC3 signal (for subcellular localization of LC3) for 1 h at room 

temperature. The immunoreactivity was detected with a streptavidin-biotin kit (Nichirei, 

Tokyo, Japan), followed by incubation with a 1:50 dilution of a goat antibody against 

horseradish peroxidase conjugated to 12 nm gold particles (Jackson ImmunoResearch 

Laboratory, PA, USA) for 1 h at room temperature. Finally, the sections were contrasted 

with uranyl acetate and lead citrate and viewed using an H-7650 (Hitachi, Tokyo, Japan) 

electron microscope operated at 80 kV. Three mice per experiment were used for the 

immunoelectron microscopic analyses. 

 

Rapamycin and chloroquine administration 

Two-month-old male FNDI mice and their wild-type littermates were divided into 

control and rapamycin or chloroquine groups. FNDI mice in the rapamycin or 

chloroquine groups were treated with an intraperitoneal administration of rapamycin (20 

mg/kg/day, #R-5000, LC Laboratories, Woburn, MA, USA) or chloroquine (20 

mg/kg/day, #C6628, Sigma-Aldrich) daily for 28 days, in addition to wild-type littermates 

for 7 days. The dosage of rapamycin or chloroquine employed in this study was 

determined based on previous studies (Cortes et al., 2012; Nalbandian et al., 2015; 



 

Ravikumar et al., 2004; Vodicka et al., 2014; Zois et al., 2011). 

 

Immunoblotting 

The hypothalamus of wild-type mice were lysed in a buffer containing 10 mM Tris-

HCl pH 7.4, 150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 5 

mM EDTA, 50 mM NaF, 2 mM Na3VO4, and 1% protease inhibitor cocktail (Sigma-

Aldrich). After centrifuging the samples, protein concentrations in the supernatants were 

determined by bicinchoninic acid assay using a bicinchoninic acid kit (Sigma-Aldrich). 

Ten micrograms of protein per sample was separated by 10% SDS-PAGE and transferred 

to polyvinylidene difluoride membranes (Millipore). Blots were blocked in 5% skimmed 

milk in TBS-T solution (10 mM Tris-HCl pH 7.4, 150 mM NaCl and 0.1% Tween) for 1 

h at RT. Membranes were incubated with a mouse anti-LC3 antibody (1:10000, #M186-

3; Medical and Biological Laboratories, Nagoya, Japan) overnight at 4℃ and a rabbit 

anti--actin antibody (1:10000, #ab8227; Abcam) for 1 h at RT. Primary antibodies were 

probed with HRP-conjugated goat anti-mouse IgG (1:10000, #P0447; Agilent, Tokyo, 

Japan) and HRP-conjugated donkey anti-rabbit IgG (1:10000, #NA934; GE Healthcare, 

Little Chalfont, UK) for 1 h at RT. To improve sensitivity and the signal-to-noise ratio, 

Can Get Signal Immunoreaction Enhancer Solution (Toyobo) was used for the dilution of 

the primary and secondary antibodies. Immunoreactivity was detected using the ECL 

Prime Western Blotting Detection Reagent (GE Healthcare). Blots were quantified using 

NIH ImageJ software. Four mice per group were used for the immunoblotting analyses. 

 

Statistical analysis 

Statistical significance of the differences among groups was analyzed by an unpaired 



 

t-test. Results are expressed as means ± SE, and differences were considered statistically 

significant at P < 0.05. 
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