162 research outputs found

    Spin waves and spin-state transitions in a ruthenate high-temperature antiferromagnet

    Full text link
    Ruthenium compounds play prominent roles in materials research ranging from oxide electronics to catalysis, and serve as a platform for fundamental concepts such as spin-triplet superconductivity, Kitaev spin-liquids, and solid-state analogues of the Higgs mode in particle physics. However, basic questions about the electronic structure of ruthenates remain unanswered, because several key parameters (including the Hund's-rule, spin-orbit, and exchange interactions) are comparable in magnitude, and their interplay is poorly understood - partly due to difficulties in synthesizing sizable single crystals for spectroscopic experiments. Here we introduce a resonant inelastic x-ray scattering (RIXS) technique capable of probing collective modes in microcrystals of 4d4d-electron materials. We present a comprehensive set of data on spin waves and spin-state transitions in the honeycomb antiferromagnet SrRu2_{2}O6_{6}, which possesses an unusually high N\'eel temperature. The new RIXS method provides fresh insight into the unconventional magnetism of SrRu2_{2}O6_{6}, and enables momentum-resolved spectroscopy of a large class of 4d4d transition-metal compounds.Comment: The original submitted version of the published manuscript. https://www.nature.com/articles/s41563-019-0327-

    Band-width control in a perovskite-type 3d^1 correlated metal Ca_{1-x}Sr_xVO_3. I. Evolution of the electronic properties and effective mass

    Full text link
    Single crystals of the perovskite-type 3d13d^{1} metallic alloy system Ca1x_{1-x}Srx_xVO3_3 were synthesized in order to investigate metallic properties near the Mott transition. The substitution of a Ca2+^{2+} ion for a Sr2+^{2+} ion reduces the band width WW due to a buckling of the V-O-V bond angle from 180\sim180^\circ for SrVO3_3 to 160\sim160^\circ for CaVO3_3. Thus, the value of WW can be systematically controlled without changing the number of electrons making Ca1x_{1-x}Srx_xVO3_3: one of the most ideal systems for studying band-width effects. The Sommerfeld-Wilson's ratio (2\simeq2), the Kadowaki-Woods ratio (in the same region as heavy Fermion systems), and a large T2T^{2} term in the electric resistivity, even at 300 K, substantiate a large electron correlation in this system, though the effective mass, obtained by thermodynamic and magnetic measurements, shows only a systematic but moderate increase in going from SrVO3_3 to CaVO3_3, in contrast to the critical enhancement expected from the Brinkmann-Rice picture. It is proposed that the metallic properties observed in this system near the Mott transition can be explained by considering the effect of a non-local electron correlation.Comment: 14 pages in a Phys. Rev. B camera-ready format with 10 EPS figures embedded. LaTeX 2.09 source file using "camera.sty" and "prbplug.sty" provided by N. Shirakawa. For OzTeX (Macintosh), use "ozfig.sty" instead of "psfig.sty". "ozfig.sty" can be also obtained by e-mail request to N. Shirakawa: . Submitted to Phys. Rev.

    Antigen-expressing immunostimulatory liposomes as a genetically programmable synthetic vaccine

    Get PDF
    Liposomes are versatile (sub)micron-sized membrane vesicles that can be used for a variety of applications, including drug delivery and in vivo imaging but they also represent excellent models for artificial membranes or cells. Several studies have demonstrated that in vitro transcription and translation can take place inside liposomes to obtain compartmentalized production of functional proteins within the liposomes (Kita et al. in Chembiochem 9(15):2403–2410, 2008; Moritani et al.in FEBS J, 2010; Kuruma et al. in Methods Mol Biol 607:161–171, 2010; Murtas et al. in Biochem Biophys Res Commun 363(1):12–17, 2007; Sunami et al. in Anal Biochem 357(1):128–136, 2006; Ishikawa et al. in FEBS Lett 576(3):387–390, 2004; Oberholzer et al. in Biochem Biophys Res Commun 261(2):238–241, 1999). Such a minimal artificial cell-based model is ideal for synthetic biology based applications. In this study, we propose the use of liposomes as artificial microbes for vaccination. These artificial microbes can be genetically programmed to produce specific antigens at will. To show proof-of-concept for this artificial cell-based platform, a bacterial in vitro transcription and translation system together with a gene construct encoding the model antigen β-galactosidase were entrapped inside multilamellar liposomes. Vaccination studies in mice showed that such antigen-expressing immunostimulatory liposomes (AnExILs) elicited higher specific humoral immune responses against the produced antigen (β-galactosidase) than control vaccines (i.e. AnExILs without genetic input, liposomal β-galactosidase or pDNA encoding β-galactosidase). In conclusion, AnExILs present a new platform for DNA-based vaccines which combines antigen production, adjuvanticity and delivery in one system and which offer several advantages over existing vaccine formulations

    Characterization of autonomous Dart1 transposons belonging to the hAT superfamily in rice

    Get PDF
    An endogenous 0.6-kb rice DNA transposon, nDart1-0, was found as an active nonautonomous element in a mutable virescent line, pyl-v, displaying leaf variegations. Here, we demonstrated that the active autonomous element aDart in pyl-v corresponds to Dart1-27 on chromosome 6 in Nipponbare, which carries no active aDart elements, and that aDart and Dart1-27 are identical in their sequences and chromosomal locations, indicating that Dart1-27 is epigenetically silenced in Nipponbare. The identification of aDart in pyl-v was first performed by map-based cloning and by detection of the accumulated transposase transcripts. Subsequently, various transposition activities of the cloned Dart1-27 element from Nipponbare were demonstrated in Arabidopsis. Dart1-27 in Arabidopsis was able to excise nDart1-0 and Dart1-27 from cloned sites, generating footprints, and to integrate into new sites, generating 8-bp target site duplications. In addition to Dart1-27, Nipponbare contains 37 putative autonomous Dart1 elements because their putative transposase genes carry no apparent nonsense or frameshift mutations. Of these, at least four elements were shown to become active aDart elements in transgenic Arabidopsis plants, even though considerable sequence divergence arose among their transposases. Thus, these four Dart1 elements and Dart1-27 in Nipponbare must be potential autonomous elements silenced epigenetically. The regulatory and evolutionary implications of the autonomous Dart1 elements and the development of an efficient transposon-tagging system in rice are discussed

    Hemodialysis Removes Uremic Toxins That Alter the Biological Actions of Endothelial Cells

    Get PDF
    Chronic kidney disease is linked to systemic inflammation and to an increased risk of ischemic heart disease and atherosclerosis. Endothelial dysfunction associates with hypertension and vascular disease in the presence of chronic kidney disease but the mechanisms that regulate the activation of the endothelium at the early stages of the disease, before systemic inflammation is established remain obscure. In the present study we investigated the effect of serum derived from patients with chronic kidney disease either before or after hemodialysis on the activation of human endothelial cells in vitro, as an attempt to define the overall effect of uremic toxins at the early stages of endothelial dysfunction. Our results argue that uremic toxins alter the biological actions of endothelial cells and the remodelling of the extracellular matrix before signs of systemic inflammatory responses are observed. This study further elucidates the early events of endothelial dysfunction during toxic uremia conditions allowing more complete understanding of the molecular events as well as their sequence during progressive renal failure

    Transforming Growth Factor-β1 Suppresses Hepatitis B Virus Replication by the Reduction of Hepatocyte Nuclear Factor-4α Expression

    Get PDF
    Several studies have demonstrated that cytokine-mediated noncytopathic suppression of hepatitis B virus (HBV) replication may provide an alternative therapeutic strategy for the treatment of chronic hepatitis B infection. In our previous study, we showed that transforming growth factor-beta1 (TGF-β1) could effectively suppress HBV replication at physiological concentrations. Here, we provide more evidence that TGF-β1 specifically diminishes HBV core promoter activity, which subsequently results in a reduction in the level of viral pregenomic RNA (pgRNA), core protein (HBc), nucleocapsid, and consequently suppresses HBV replication. The hepatocyte nuclear factor 4alpha (HNF-4α) binding element(s) within the HBV core promoter region was characterized to be responsive for the inhibitory effect of TGF-β1 on HBV regulation. Furthermore, we found that TGF-β1 treatment significantly repressed HNF-4α expression at both mRNA and protein levels. We demonstrated that RNAi-mediated depletion of HNF-4α was sufficient to reduce HBc synthesis as TGF-β1 did. Prevention of HNF-4α degradation by treating with proteasome inhibitor MG132 also prevented the inhibitory effect of TGF-β1. Finally, we confirmed that HBV replication could be rescued by ectopic expression of HNF-4α in TGF-β1-treated cells. Our data clarify the mechanism by which TGF-β1 suppresses HBV replication, primarily through modulating the expression of HNF-4α gene

    Differential gene expression profiles of gastric cancer cells established from primary tumour and malignant ascites

    Get PDF
    Advanced gastric cancer is often accompanied by metastasis to the peritoneum, resulting in a high mortality rate. Mechanisms involved in gastric cancer metastasis have not been fully clarified because metastasis involves multiple steps and requires a combination of altered expressions of many different genes. Thus, independent analysis of any single gene would be insufficient to understand all of the aspects of gastric cancer peritoneal dissemination. In this study, we performed a global analysis of the differential gene expression of a gastric cancer cell line established from a primary main tumour (SNU-1) and of other cell lines established from the metastasis to the peritoneal cavity (SNU-5, SNU-16, SNU-620, KATO-III and GT3TKB). The application of a high-density cDNA microarray method made it possible to analyse the expression of approximately 21 168 genes. Our examinations of SNU-5, SNU-16, SNU-620, KATO-III and GT3TKB showed that 24 genes were up-regulated and 17 genes down-regulated besides expression sequence tags. The analysis revealed the following altered expression such as: (a) up-regulation of CD44 (cell adhesion), keratins 7, 8, and 14 (epitherial marker), aldehyde dehydrogenase (drug metabolism), CD9 and IP3 receptor type3 (signal transduction); (b) down-regulation of IL2 receptor γ, IL4-Stat (immune response), p27 (cell cycle) and integrin β4 (adhesion) in gastric cancer cells from malignant ascites. We then analysed eight gastric cancer cell lines with Northern blot and observed preferential up-regulation and down-regulation of these selected genes in cells prone to peritoneal dissemination. Reverse transcriptase–polymerase chain reaction confirmed that several genes selected by DNA microarray were also overexpressed in clinical samples of malignant ascites. It is therefore considered that these genes may be related to the peritoneal dissemination of gastric cancers. The results of this global gene expression analysis of gastric cancer cells with peritoneal dissemination, promise to provide a new insight into the study of human gastric cancer peritoneal dissemination

    Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial

    Get PDF
    Background: The EMPA KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council
    corecore