578 research outputs found

    The membrane-embedded segment of cytochrome b5 as studied by cross-linking with photoactivatable phospholipids

    Get PDF
    Vesicles were prepared from a 9:1 (mole/mol) mixture of dipalmitoyl phosphatidylcholine and the radioactively labeled phospholipids, 1-palmitoyl-2-ω -(m-diazirinophenoxy)undecanoyl-sn-glycero-3-phosphocholine (PC-I) or 1-palmitoyl-2-ω -(2-diazo-3,3,3-trifluropropionyloxy)lauroyl-sn- glycero-3-phosphocholine (PC-II). Rabbit liver cytochrome b5 was inserted into these vesicles spontaneously and the resulting vesicles containing the cytochrome b5 in the transferable form were photolyzed. Cytochrome b5 containing covalently cross-linked phospholipids was isolated by Sephadex LH-60 column chromatography using ethanol/formic acid as the solvent. Of the total radioactivity, 4.6% (PC-I) or 11.3% (PC-II) was linked to the protein; of the former, up to 51% was base-labile, while in the latter, 22% was base-labile. The sites of cross-linking of PC-I to the protein were investigated by fragmentation with trypsin, Staphylococcus aureas V8 protease, CNBr, and o-iodosobenzoic acid followed by Sephadex LH-60 chromatography and Edman sequencing (solid phase) of the appropriate fragments. The distribution of cross-linking was broad (Ser-104 to Met-130), showing a bell-shaped pattern with a significant peak at Ser-118. The labeling pattern is consistent with the previously proposed loop-back model for the membranous segment in the transferable form of cytochrome b5

    Solutions to the ultradiscrete Toda molecule equation expressed as minimum weight flows of planar graphs

    Full text link
    We define a function by means of the minimum weight flow on a planar graph and prove that this function solves the ultradiscrete Toda molecule equation, its B\"acklund transformation and the two dimensional Toda molecule equation. The method we employ in the proof can be considered as fundamental to the integrability of ultradiscrete soliton equations.Comment: 14 pages, 10 figures Added citations in v

    Ballistic transport and surface scattering in (In,Ga)As-InP heterostructure narrow channels

    Get PDF
    Narrow conduction channels are fabricated from an In0.75Ga0.25As-InP heterostructure using electron-beam lithography and dry etching. The etched surface is realized to be smooth by employing a reactive ion etching. The etching-induced surface conduction is eliminated by removing the damaged surface layer using a diluted HCl solution. The negligible surface depletion for the In-rich quantum well enables to create conducting channels in arbitrary geometries such as in a circular shape. We evidence the presence of a ballistic contribution in the electron transport by demonstrating a rectification of rf excitations that is achieved by the magnetic-field-tuned transmission asymmetry in the circularly-shaped channels. The absence of the surface depletion is shown to cause, on the other hand, a surface scattering for the electrons confined in the channels. An increase of the resistance, including its anomalous enhancement at low temperatures, is induced by the gas molecules attached to the sidewalls of the channels. We also report a large persistent photoconduction, which occurs as a parallel conduction in the undoped InP barrier layer.Peer Reviewe

    Magnetoconductance Oscillations in Ballistic Semiconductor-Superconductor Junctions

    Full text link
    The mechanism of the magnetoconductance oscillations in junctions of a ballistic semiconductor and a superconductor is discussed. The oscillations appear when both the normal and the Andreev reflection occur at the interface. The interplay between the classical cyclotron motion of a quasiparticle and the phase shift caused by the magnetic field is the origin of the conductance oscillations.Comment: 4 pages, 4 figure

    Coherent electronic transport in a multimode quantum channel with Gaussian-type scatterers

    Full text link
    Coherent electron transport through a quantum channel in the presence of a general extended scattering potential is investigated using a T-matrix Lippmann-Schwinger approach. The formalism is applied to a quantum wire with Gaussian type scattering potentials, which can be used to model a single impurity, a quantum dot or more complicated structures in the wire. The well known dips in the conductance in the presence of attractive impurities is reproduced. A resonant transmission peak in the conductance is seen as the energy of the incident electron coincides with an energy level in the quantum dot. The conductance through a quantum wire in the presence of an asymmetric potential are also shown. In the case of a narrow potential parallel to the wire we find that two dips appear in the same subband which we ascribe to two quasi bound states originating from the next evanescent mode.Comment: RevTeX with 14 postscript figures include

    Geometry-dependent scattering through quantum billiards: Experiment and theory

    Full text link
    We present experimental studies of the geometry-specific quantum scattering in microwave billiards of a given shape. We perform full quantum mechanical scattering calculations and find an excellent agreement with the experimental results. We also carry out the semiclassical calculations where the conductance is given as a sum of all classical trajectories between the leads, each of them carrying the quantum-mechanical phase. We unambiguously demonstrate that the characteristic frequencies of the oscillations in the transmission and reflection amplitudes are related to the length distribution of the classical trajectories between the leads, whereas the frequencies of the probabilities can be understood in terms of the length difference distribution in the pairs of classical trajectories. We also discuss the effect of non-classical "ghost" trajectories that include classically forbidden reflection off the lead mouths.Comment: 4 pages, 4 figure

    Electron-beam propagation in a two-dimensional electron gas

    Full text link
    A quantum mechanical model based on a Green's function approach has been used to calculate the transmission probability of electrons traversing a two-dimensional electron gas injected and detected via mode-selective quantum point contacts. Two-dimensional scattering potentials, back-scattering, and temperature effects were included in order to compare the calculated results with experimentally observed interference patterns. The results yield detailed information about the distribution, size, and the energetic height of the scattering potentials.Comment: 7 pages, 6 figure

    Readout ASICs and Electronics for the 144-channel HAPDs for the Aerogel RICH at Belle II

    Get PDF
    AbstractThe particle identification (PID) device in the endcap of the Belle detector will be upgraded to a ring imaging Cherenkov counter (RICH) using aerogel as a radiator at the Belle II experiment. We develop the electronics to read out the 70,000 channels of hit information from the 144-channel hybrid avalanche photodetectors (HAPD), of the aerogel RICH detector. A readout ASIC is developed to digitize the HAPD signals, and was used in a beam test with the prototype detector. The performance and plan of the ASIC is reported in this study. We have also designed the readout electronics for the aerogel RICH, which consist of front-end boards with the ASICs merger boards to collect data from the front-end boards. A front-end board that fits in the actual available space for the aerogel RICH electronics was produced
    corecore