879 research outputs found

    Performance of an ideal turbine in an inviscid shear flow

    Get PDF
    Although wind and tidal turbines operate in turbulent shear flow, most theoretical results concerning turbine performance, such as the well-known Betz limit, assume the upstream velocity profile is uniform. To improve on these existing results we extend the classical actuator disc model in this paper to investigate the performance of an ideal turbine in steady, inviscid shear flow. The model is developed on the assumption that there is negligible lateral interaction in the flow passing through the disc and that the actuator applies a uniform resistance across its area. With these assumptions, solution of the model leads to two key results. First, for laterally unbounded shear flow, it is shown that the normalised power extracted is the same as that for an ideal turbine in uniform flow, if the average of the cube of the upstream velocity of the fluid passing through the turbine is used in the normalisation. Second, for a laterally bounded shear flow, it is shown that the same normalisation can be applied, but allowance must also be made for the fact that non-uniform flow bypassing the turbine alters the background pressure gradient and, in turn, the turbines ‘effective blockage’ (so that it may be greater or less than the geometric blockage, defined as the ratio of turbine disc area to cross-sectional area of the flow). Predictions based on the extended model agree well with numerical simulations approximating the incompressible Euler equations. The model may be used to improve interpretation of model-scale results for wind and tidal turbines in tunnels/flumes, to investigate the variation in force across a turbine and to update existing theoretical models of arrays of tidal turbines

    Reciprocal transmittances and reflectances: An elementary proof

    Full text link
    We present an elementary proof concerning reciprocal transmittances and reflectances. The proof is direct, simple, and valid for the diverse objects that can be absorptive and induce diffraction and scattering, as long as the objects respond linearly and locally to electromagnetic waves. The proof enables students who understand the basics of classical electromagnetics to grasp the physical basis of reciprocal optical responses. In addition, we show an example to demonstrate reciprocal response numerically and experimentally.Comment: 6 pages, 5 figures. RevTEX4. Improved wording. Physics Educatio

    Comet 9P/Tempel 1: Interpretation with the Deep Impact Results

    Full text link
    According to our common understandings, the original surface of a short-period comet nucleus has been lost by sublimation processes during its close approaches to the Sun. Sublimation results in the formation of a dust mantle on the retreated surface and in chemical differentiation of ices over tens or hundreds of meters below the mantle. In the course of NASA's Deep Impact mission, optical and infrared imaging observations of the ejecta plume were conducted by several researchers, but their interpretations of the data came as a big surprise: (1) The nucleus of comet 9P/Tempel 1 is free of a dust mantle, but maintains its pristine crust of submicron-sized carbonaceous grains; (2) Primordial materials are accessible already at a depth of several tens of cm with abundant silicate grains of submicrometer sizes. In this study, we demonstrate that a standard model of cometary nuclei explains well available observational data: (1) A dust mantle with a thickness of ~1-2 m builds up on the surface, where compact aggregates larger than tens of micrometers dominate; (2) Large fluffy aggregates are embedded in chemically differentiated layers as well as in the deepest part of the nucleus with primordial materials. We conclude that the Deep Impact results do not need any peculiar view of a comet nucleus.Comment: 11 pages, 1 figure, 1 table. ApJ letters, 673, L199-20

    Iron-Based Heavy Quasiparticles in SrFe4_{4}Sb12_{12}: An Infrared Spectroscopic Study

    Get PDF
    Temperature-dependent infrared reflectivity spectra of SrFe4_{4}Sb12_{12} has been measured. A renormalized Drude peak with a heavy effective mass and a pronounced pseudogap of 10 meV develops in the optical conductivity spectra at low temperatures. As the temperature decreases below 100 K, the effective mass (mm^{*}) rapidly increases, and the scattering rate (1/τ1/\tau) is quenched. The temperature dependence of mm^{*} and 1/τ1/\tau indicates that the hybridization between the Fe 3d spins and the charge carriers plays an important role in determining the physical properties of SrFe4_{4}Sb12_{12} at low temperatures. This result is the clear evidence of the iron-based heavy quasiparticles.Comment: 5 pages, 5 figure

    Ambipolar suppression of superconductivity by ionic gating in optimally-doped BaFe2(As,P)2 ultrathin films

    Get PDF
    Superconductivity (SC) in the Ba-122 family of iron-based compounds can be controlled by aliovalent or isovalent substitutions, applied external pressure, and strain, the combined effects of which are sometimes studied within the same sample. Most often, the result is limited to a shift of the SC dome to different doping values. In a few cases, the maximum SC transition at optimal doping can also be enhanced. In this work, we study the combination of charge doping together with isovalent P substitution and strain by performing ionic gating experiments on BaFe2_2(As0.8_{0.8}P0.2_{0.2})2_2 ultrathin films. We show that the polarization of the ionic gate induces modulations to the normal-state transport properties that can be mainly ascribed to surface charge doping. We demonstrate that ionic gating can only shift the system away from the optimal conditions, as the SC transition temperature is suppressed by both electron and hole doping. We also observe a broadening of the resistive transition, which suggests that the SC order parameter is modulated nonhomogeneously across the film thickness, in contrast with earlier reports on charge-doped standard BCS superconductors and cuprates.Comment: 10 pages, 5 figure

    Electronic inhomogeneity in EuO: Possibility of magnetic polaron states

    Full text link
    We have observed the spatial inhomogeneity of the electronic structure of a single-crystalline electron-doped EuO thin film with ferromagnetic ordering by employing infrared magneto-optical imaging with synchrotron radiation. The uniform paramagnetic electronic structure changes to a uniform ferromagnetic structure via an inhomogeneous state with decreasing temperature and increasing magnetic field slightly above the ordering temperature. One possibility of the origin of the inhomogeneity is the appearance of magnetic polaron states.Comment: 4 pages, 3 figure

    Hypocretin/Orexin Peptides Alter Spike Encoding by Serotonergic Dorsal Raphe Neurons through Two Distinct Mechanisms That Increase the Late Afterhyperpolarization

    Get PDF
    Orexins (hypocretins) are neuropeptides that regulate multiple homeostatic processes, including reward and arousal, in part by exciting serotonergic dorsal raphe neurons, the major source of forebrain serotonin. Here, using mouse brain slices, we found that, instead of simply depolarizing these neurons, orexin-A altered the spike encoding process by increasing the postspike afterhyperpolarization (AHP) via two distinct mechanisms. This orexin-enhanced AHP (oeAHP) was mediated by both OX1 and OX2 receptors, required Ca(2+) influx, reversed near EK, and decayed with two components, the faster of which resulted from enhanced SK channel activation, whereas the slower component decayed like a slow AHP (sAHP), but was not blocked by UCL2077, an antagonist of sAHPs in some neurons. Intracellular phospholipase C inhibition (U73122) blocked the entire oeAHP, but neither component was sensitive to PKC inhibition or altered PKA signaling, unlike classical sAHPs. The enhanced SK current did not depend on IP3-mediated Ca(2+) release but resulted from A-current inhibition and the resultant spike broadening, which increased Ca(2+) influx and Ca(2+)-induced-Ca(2+) release, whereas the slower component was insensitive to these factors. Functionally, the oeAHP slowed and stabilized orexin-induced firing compared with firing produced by a virtual orexin conductance lacking the oeAHP. The oeAHP also reduced steady-state firing rate and firing fidelity in response to stimulation, without affecting the initial rate or fidelity. Collectively, these findings reveal a new orexin action in serotonergic raphe neurons and suggest that, when orexin is released during arousal and reward, it enhances the spike encoding of phasic over tonic inputs, such as those related to sensory, motor, and reward events. SIGNIFICANCE STATEMENT: Orexin peptides are known to excite neurons via slow postsynaptic depolarizations. Here we elucidate a significant new orexin action that increases and prolongs the postspike afterhyperpolarization (AHP) in 5-HT dorsal raphe neurons and other arousal-system neurons. Our mechanistic studies establish involvement of two distinct Ca(2+)-dependent AHP currents dependent on phospholipase C signaling but independent of IP3 or PKC. Our functional studies establish that this action preserves responsiveness to phasic inputs while attenuating responsiveness to tonic inputs. Thus, our findings bring new insight into the actions of an important neuropeptide and indicate that, in addition to producing excitation, orexins can tune postsynaptic excitability to better encode the phasic sensory, motor, and reward signals expected during aroused states

    Playing for Data: Ground Truth from Computer Games

    Full text link
    Recent progress in computer vision has been driven by high-capacity models trained on large datasets. Unfortunately, creating large datasets with pixel-level labels has been extremely costly due to the amount of human effort required. In this paper, we present an approach to rapidly creating pixel-accurate semantic label maps for images extracted from modern computer games. Although the source code and the internal operation of commercial games are inaccessible, we show that associations between image patches can be reconstructed from the communication between the game and the graphics hardware. This enables rapid propagation of semantic labels within and across images synthesized by the game, with no access to the source code or the content. We validate the presented approach by producing dense pixel-level semantic annotations for 25 thousand images synthesized by a photorealistic open-world computer game. Experiments on semantic segmentation datasets show that using the acquired data to supplement real-world images significantly increases accuracy and that the acquired data enables reducing the amount of hand-labeled real-world data: models trained with game data and just 1/3 of the CamVid training set outperform models trained on the complete CamVid training set.Comment: Accepted to the 14th European Conference on Computer Vision (ECCV 2016
    corecore