93 research outputs found

    Affixin interacts with α-actinin and mediates integrin signaling for reorganization of F-actin induced by initial cell–substrate interaction

    Get PDF
    The linking of integrin to cytoskeleton is a critical event for an effective cell migration. Previously, we have reported that a novel integrin-linked kinase (ILK)–binding protein, affixin, is closely involved in the linkage between integrin and cytoskeleton in combination with ILK. In the present work, we demonstrated that the second calponin homology domain of affixin directly interacts with α-actinin in an ILK kinase activity–dependent manner, suggesting that integrin–ILK signaling evoked by substrate adhesion induces affixin–α-actinin interaction. The overexpression of a peptide corresponding to the α-actinin–binding site of affixin as well as the knockdown of endogenous affixin by small interference RNA resulted in the blockade of cell spreading. Time-lapse observation revealed that in both experiments cells were round with small peripheral blebs and failed to develop lamellipodia, suggesting that the ILK–affixin complex serves as an integrin-anchoring site for α-actinin and thereby mediates integrin signaling to α-actinin, which has been shown to play a critical role in actin polymerization at focal adhesions

    Identification of a tomato UDP-arabinosyltransferase for airborne volatile reception

    Get PDF
    植物間コミュニケーションの仕組みを解明 --受容した香りを防御物質に変える遺伝子発見--. 京都大学プレスリリース. 2023-02-28.Volatiles from herbivore-infested plants function as a chemical warning of future herbivory for neighboring plants. (Z)-3-Hexenol emitted from tomato plants infested by common cutworms is taken up by uninfested plants and converted to (Z)-3-hexenyl β-vicianoside (HexVic). Here we show that a wild tomato species (Solanum pennellii) shows limited HexVic accumulation compared to a domesticated tomato species (Solanum lycopersicum) after (Z)-3-hexenol exposure. Common cutworms grow better on an introgression line containing an S. pennellii chromosome 11 segment that impairs HexVic accumulation, suggesting that (Z)-3-hexenol diglycosylation is involved in the defense of tomato against herbivory. We finally reveal that HexVic accumulation is genetically associated with a uridine diphosphate-glycosyltransferase (UGT) gene cluster that harbors UGT91R1 on chromosome 11. Biochemical and transgenic analyses of UGT91R1 show that it preferentially catalyzes (Z)-3-hexenyl β-D-glucopyranoside arabinosylation to produce HexVic in planta

    The Composite Effect of Transgenic Plant Volatiles for Acquired Immunity to Herbivory Caused by Inter-Plant Communications

    Get PDF
    A blend of volatile organic compounds (VOCs) emitted from plants induced by herbivory enables the priming of defensive responses in neighboring plants. These effects may provide insights useful for pest control achieved with transgenic-plant-emitted volatiles. We therefore investigated, under both laboratory and greenhouse conditions, the priming of defense responses in plants (lima bean and corn) by exposing them to transgenic-plant-volatiles (VOCos) including (E)-β-ocimene, emitted from transgenic tobacco plants (NtOS2) that were constitutively overexpressing (E)-β-ocimene synthase. When lima bean plants that had previously been placed downwind of NtOS2 in an open-flow tunnel were infested by spider mites, they were more defensive to spider mites and more attractive to predatory mites, in comparison to the infested plants that had been placed downwind of wild-type tobacco plants. This was similarly observed when the NtOS2-downwind maize plants were infested with Mythimna separata larvae, resulting in reduced larval growth and greater attraction of parasitic wasps (Cotesia kariyai). In a greenhouse experiment, we also found that lima bean plants (VOCos-receiver plants) placed near NtOS2 were more attractive when damaged by spider mites, in comparison to the infested plants that had been placed near the wild-type plants. More intriguingly, VOCs emitted from infested VOCos-receiver plants affected their conspecific neighboring plants to prime indirect defenses in response to herbivory. Altogether, these data suggest that transgenic-plant-emitted volatiles can enhance the ability to prime indirect defenses via both plant-plant and plant-plant-plant communications

    Self-referential holography and its applications to data storage and phase-to-intensity conversion

    Get PDF
    Holographic recording methods require the use of a reference beam that is coherent with the signal beam carrying the information to be recorded. In this paper, we propose self-referential holography (SRH) for holographic recording without the use of a reference beam. SRH can realize purely one-beam holographic recording by considering the signal beam itself as the reference beam. The readout process in SRH is based on energy transfer by inter-pixel interference in holographic diffraction, which depends on the spatial phase difference between the recorded phase and the readout phase. The phase-modulated recorded signal is converted into an intensity-modulated beam that can be easily detected using a conventional image sensor. SRH can be used effectively for holographic data storage and phase-to-intensity conversion. (C) 2013 Optical Society of Americ

    Direct interaction with ACR11 is necessary for post-transcriptional control of GLU1-encoded ferredoxin-dependent glutamate synthase in leaves

    Get PDF
    Because it plays an essential role in nitrogen (N) assimilation and photorespiration, the glutamine synthetase (GS)/glutamate synthase (GOGAT) system is widely accepted as occupying a central position in leaf N metabolism. However, the regulation of GOGAT at the post-transcriptional level is poorly understood. Here, we show that ACR11, an ACT (acronym for aspartate kinase, chorismate mutase, and TyrA) domain-containing family protein, interacts with Glu1-encoded ferredoxin (Fd)-GOGAT in Arabidopsis chloroplasts. In addition, Arabidopsis acr11 mutants have lost the capability to control Fd-GOGAT levels in response to light/dark diurnal cycles, nitrogen inputs, and changes in photorespiratory activity. Considering that ACR11 has putative glutamine-binding domains, our results indicate that ACR11 is necessary for post-transcriptional control of leaf Glu1-encoded Fd-GOGAT. This regulation takes place through direct interaction of ACR11 and Fd-GOGAT, possibly in an allosteric manner

    Evolutionary Changes in Chlorophyllide a Oxygenase (CAO) Structure Contribute to the Acquisition of a New Light-harvesting Complex in Micromonas

    Get PDF
    Chlorophyll b is found in photosynthetic prokaryotes and primary and secondary endosymbionts, although their light-harvesting systems are quite different. Chlorophyll b is synthesized from chlorophyll a by chlorophyllide a oxygenase (CAO), which is a Rieske-mononuclear iron oxygenase. Comparison of the amino acid sequences of CAO among photosynthetic organisms elucidated changes in the domain structures of CAO during evolution. However, the evolutionary relationship between the light-harvesting system and the domain structure of CAO remains unclear. To elucidate this relationship, we investigated the CAO structure and the pigment composition of chlorophyll-protein complexes in the prasinophyte Micromonas. The Micromonas CAO is composed of two genes, MpCAO1 and MpCAO2, that possess Rieske and mononuclear iron-binding motifs, respectively. Only when both genes were introduced into the chlorophyll b-less Arabidopsis mutant (ch1-1) was chlorophyll b accumulated, indicating that cooperation between the two subunits is required to synthesize chlorophyll b. Although Micromonas has a characteristic light-harvesting system in which chlorophyll b is incorporated into the core antennas of reaction centers, chlorophyll b was also incorporated into the core antennas of reaction centers of the Arabidopsis transformants that contained the two Micromonas CAO proteins. Based on these results, we discuss the evolutionary relationship between the structures of CAO and light-harvesting systems

    Functional Analysis of Light-harvesting-like Protein 3 (LIL3) and Its Light-harvesting Chlorophyll-binding Motif in Arabidopsis

    Get PDF
    The light-harvesting complex (LHC) constitutes the major light-harvesting antenna of photosynthetic eukaryotes. LHC contains a characteristic sequence motif, termed LHC motif, consisting of 25-30 mostly hydrophobic amino acids. This motif is shared by a number of transmembrane proteins from oxygenic photoautotrophs that are termed light-harvesting-like (LIL) proteins. To gain insights into the functions of LIL proteins and their LHC motifs, we functionally characterized a plant LIL protein, LIL3. This protein has been shown previously to stabilize geranylgeranyl reductase (GGR), a key enzyme in phytol biosynthesis. It is hypothesized that LIL3 functions to anchor GGR to membranes. First, we conjugated the transmembrane domain of LIL3 or that of ascorbate peroxidase to GGR and expressed these chimeric proteins in an Arabidopsis mutant lacking LIL3 protein. As a result, the transgenic plants restored phytol-synthesizing activity. These results indicate that GGR is active as long as it is anchored to membranes, even in the absence of LIL3. Subsequently, we addressed the question why the LHC motif is conserved in the LIL3 sequences. We modified the transmembrane domain of LIL3, which contains the LHC motif, by substituting its conserved amino acids (Glu-171, Asn-174, and Asp-189) with alanine. As a result, the Arabidopsis transgenic plants partly recovered the phytol-biosynthesizing activity. However, in these transgenic plants, the LIL3-GGR complexes were partially dissociated. Collectively, these results indicate that the LHC motif of LIL3 is involved in the complex formation of LIL3 and GGR, which might contribute to the GGR reaction

    Holographic diversity interferometry for optical storage

    Get PDF
    This study proposes holographic diversity interferometry (HDI), a system that combines information from spatially dispersed plural image sensors to reconstruct complex amplitude distributions of light signals. HDI can be used to generate four holographic interference fringes having different phases, thus enabling optical phase detection in a single measurement. Unlike conventional phase-shifting digital holography, this system does not require piezoelectric elements and phase shift arrays. In order to confirm the effectiveness of HDI, we generated optical signals having multilevel phases and amplitudes by using two SLMs and performed an experiment for detection and demodulation with HDI. (C) 2011 Optical Society of Americ

    Unique Peripheral Antennas in the Photosystems of the Streptophyte Alga Mesostigma viride

    Get PDF
    Land plants evolved from a single group of streptophyte algae. One of the key factors needed for adaptation to a land environment is the modification in the peripheral antenna systems of photosystems (PSs). Here, the PSs of Mesostigma viride, one of the earliest-branching streptophyte algae, were analyzed to gain insight into their evolution. Isoform sequencing and phylogenetic analyses of light-harvesting complexes (LHCs) revealed that M. viride possesses three algae-specific LHCs, including algae-type LHCA2, LHCA9 and LHCP, while the streptophyte-specific LHCB6 was not identified. These data suggest that the acquisition of LHCB6 and the loss of algae-type LHCs occurred after the M. viride lineage branched off from other streptophytes. Clear-native (CN)-polyacrylamide gel electrophoresis (PAGE) resolved the photosynthetic complexes, including the PSI-PSII megacomplex, PSII-LHCII, two PSI-LHCI-LHCIIs, PSI-LHCI and the LHCII trimer. Results indicated that the higher-molecular weight PSI-LHCI-LHCII likely had more LHCII than the lower-molecular weight one, a unique feature of M. viride PSs. CN-PAGE coupled with mass spectrometry strongly suggested that the LHCP was bound to PSII-LHCII, while the algae-type LHCA2 and LHCA9 were bound to PSI-LHCI, both of which are different from those in land plants. Results of the present study strongly suggest that M. viride PSs possess unique features that were inherited from a common ancestor of streptophyte and chlorophyte algae
    corecore