8 research outputs found

    Discrete Time Delay Feedback Control of Stewart Platform with Intelligent Optimizer Weight Tuner

    No full text
    In the presence of complicated kinematic and dynamic, we present a generalizable robust control technique for the 6-Degree of Freedom (6DoF) Stewart integrated platform with revolving, time-delayed torque control actuators to achieve faster, and reliable efficiency for parallel control manipulators. The suggested optimal solution involves the construction of a time-delay Linear Quadratic Integral (LQI) controller integrated with an on-line Artificial Neural Network (ANN) as the cost function gain tuner. The controller is formulated to robustly mitigate the nonlinear system’s real-time tracking error with large time-delay, which is implemented via ADAMS software. The method is validated through simulation experiments to demonstrate that the developed methodology is practical, optimum, and zero-error convergence.Mechatronic Desig

    Adaptive time-delay estimation and control of optimized Stewart robot

    No full text
    Aiming at a more efficient and accurate performance of parallel manipulators in the existence of complex kinematics and dynamics, a robust generalizable methodology is proposed here for an integrated 6-DOF Stewart platform with rotary time-delayed actuators torque control. The suggested method employs a time-delay linear–quadratic integral regulator with online artificial neural network gain adjustment. The unknown time-delay is estimated through a novel robust adaptive estimator. The global asymptotic stability of the estimator is proved via a Lyapunov function. The controller is developed in MATLAB software and implemented on the robot designed in ADAMS software to ensure that the real-time tracking error of a nonlinear system with an unknown time-delay is kept to a minimum. The sensitivity of the controller to the parameter choices is studied via implementing the controller in ADAMS software and is validated by investigating the performance on a naturalistic fabricated robot. The approach is assessed using simulation and experimental tests to show the feasibility, optimum, and zero-error convergence of the technique developed.Emerging Material

    Implementation and intelligent gain tuning feedback–based optimal torque control of a rotary parallel robot

    Get PDF
    Aiming at operating optimally minimizing error of tracking and designing control effort, this study presents a novel generalizable methodology of an optimal torque control for a 6-degree-of-freedom Stewart platform with rotary actuators. In the proposed approach, a linear quadratic integral regulator with the least sensitivity to controller parameter choices is designed, associated with an online artificial neural network gain tuning. The nonlinear system is implemented in ADAMS, and the controller is formulated in MATLAB to minimize the real-time tracking error robustly. To validate the controller performance, MATLAB and ADAMS are linked together and the performance of the controller on the simulated system is validated as real time. Practically, the Stewart robot is fabricated and the proposed controller is implemented. The method is assessed by simulation experiments, exhibiting the viability of the developed methodology and highlighting an improvement of 45% averagely, from the optimum and zero-error convergence points of view. Consequently, the experiment results allow demonstrating the robustness of the controller method, in the presence of the motor torque saturation, the uncertainties, and unknown disturbances such as intrinsic properties of the real test bed.Mechatronic Desig

    Feature preserving non-rigid iterative weighted closest point and semi-curvature registration

    No full text
    Preserving features of a surface as characteristic local shape properties captured e.g. by curvature, during non-rigid registration is always difficult where finding meaningful correspondences, assuring the robustness and the convergence of the algorithm while maintaining the quality of mesh are often challenges due to the high degrees of freedom and the sensitivity to features of the source surface. In this paper, we present a non-rigid registration method utilizing a newly defined semi-curvature, which is inspired by the definition of the Gaussian curvature. In the procedure of establishing the correspondences, for each point on the source surface, a corresponding point on the target surface is selected using a dynamic weighted criterion defined on the distance and the semi-curvature. We reformulate the cost function as a combination of the semi-curvature, the stiffness, and the distance terms, and ensure to penalize errors of both the distance and the semi-curvature terms in a guaranteed stable region. For a robust and efficient optimization process, we linearize the semi-curvature term, where the region of attraction is defined and the stability of the approach is proven. Experimental results show that features of the local areas on the original surface with higher curvature values are better preserved in comparison with the conventional methods. In comparison with the other methods, this leads to, on average, 75\%, 8\% and 82\% improvement in terms of quality of correspondences selection, quality of surface after registration, and time spent of the convergence process respectively, mainly due to that the semi-curvature term logically increases the constraints and dependency of each point on the neighboring vertices based on the point's degree of curvature.Mechatronic DesignApplied Ergonomics and Desig

    Next-generation prognosis framework for pediatric spinal deformities using bio-informed deep learning networks

    No full text
    Predicting pediatric spinal deformity (PSD) from X-ray images collected on the patient’s initial visit is a challenging task. This work builds on our previous method and provides a novel bio-informed framework based on a mechanistic machine learning technique with dynamic patient-specific parameters to predict PSD. We provide a geometry-based bone growth model that can be utilized in a range of applications to enhance the bio-informed mechanistic machine learning framework. The proposed technique is utilized to examine and predict spine curvature in PSD cases such as adolescent idiopathic scoliosis. The best fit of a segmented 3D volumetric geometry of the human spine acquired from 2D X-ray images is employed. Using an active contour model based on gradient vector flow snakes, the anteroposterior and lateral views of the X-ray images are segmented to derive the 2D contours surrounding each vertebra. Using minimal user input, the snake parameters are calibrated and automatically computed over the dataset, resulting in fast image segmentation and data collection. The 2D segmented outlines of each vertebra are transformed into a 3D image segmentation result. The Iterative Closest Point mesh registration technique is then used to establish a mesh morphing approach and creates a 3D atlas spine model. Using the comprehensive 3D volumetric model, one can automatically extract spinal geometry data as inputs to the mechanistic machine learning network. Moreover, the proposed bio-informed deep learning network with the modified bone growth model achieves competitive or even superior performance against other state-of-the-art learning-based methods.Please check and confirm if the author names and initials are correct for “Yongjie Jessica Zhang” and “Wing Kam Liu”.We confirm they are correct.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Emerging MaterialsApplied Ergonomics and Desig

    Image-based modelling for Adolescent Idiopathic Scoliosis: Mechanistic machine learning analysis and prediction

    No full text
    Scoliosis, an abnormal curvature of the human spinal column, is characterized by a lateral deviation of the spine, accompanied by axial rotation of the vertebrae. Adolescent Idiopathic Scoliosis (AIS) is the most common type, affecting children between ages 8 to 18 when bone growth is at its maximum rate. We propose a mechanistic machine learning algorithm in order to study patient-specific AIS curve progression, which is associated with the bone growth and other genetic and environmental factors. Two different frameworks are used to analyse and predict curve progression, one with implementing clinical data extracted from 2D X-ray images and the other one with incorporating both clinical data and physical equations governing the non-uniform bone growth. The physical equations governing bone growth are affiliated with calculating all stress components at each region. The stress values are evaluated through a surrogate finite element simulation and a bone growth model on a detailed patient-specific geometry of the human spine. We also propose a patient-specific framework to generate the volumetric model of human spine which is partitioned into different tissues for both vertebra and intervertebral disc. It is shown that implementing physical equations governing bone growth into the prediction framework will notably improve the prediction results as compared to only using clinical data for prediction. In addition, we can predict curve progression at ages outside the range of training samples.Mechatronic Desig

    Posture-invariant three dimensional human hand statistical shape model

    No full text
    A high-fidelity digital representation of (part of) the human body is a key enabler for integrating humans in a digital twin. Among different parts of human body, building the model of the hand can be a challenging task due to the posture deviations among collected scans. In this article, we proposed a posture invariant statistical shape model (SSM) of the human hand based on 59 3D scans of human hands. First, the 3D scans were spatially aligned using a Möbius sphere-based algorithm. An articulated skeleton, which contains 20 bone segments and 16 joints, was embedded for each 3D scan. Then, all scans were aligned to the same posture using the skeleton and the linear blend skinning (LBS) algorithm. Three methods, i.e., principal component analysis (PCA), kernel-PCA (KPCA) with different kernel functions, and independent component analysis (ICA), were evaluated in the construction of the SSMs regarding the compactness, the generalization ability, and the specificity. The PCA-based SSM was selected, where 20 principal components were used as parameters for the model. Results of the leave-one-out validation indicate that the proposed model was able to fit a given 3D scan of the human hand at an accuracy of 1.21 ± 0.14 mm. Experiment results also indicated that the proposed SSM outperforms the SSM that was built on the scans without posture correction. It is concluded that the proposed posture correction approach can effectively improve the accuracy of the hand SSM and therefore enables its wide usage in human-integrated digital twin applications.nog geen uitgeversversie beschikbaarMechatronic DesignApplied Ergonomics and Desig

    Personalized product design through digital fabrication

    No full text
    Personalized designs bring added value to the products and the users. Meanwhile, they also pose challenges to the product design process as each product differs. In this paper, with the focus on personalized fit, we present an overview as well as details of the personalized design process based on design practice. The general workflow of personalized product design is introduced first. Then different steps in the workflow such as human data/parameters acquisition, computational design, design for digital fabrication, and product evaluation are presented. Tools and methods that are often used in different steps in the process are also outlined where in human data acquisition, 3D scanning, and digital human models are addressed. For computational design, the use of computational thinking tools such as abstraction, decomposition, pattern recognition and algorithms are discussed. In design for digital fabrication, additive manufacturing methods (e.g. FDM), and their requirements on the design are highlighted. For product evaluation, both functional evaluation and usability evaluation are considered and the evaluation results can be the starting point of the next design iteration. Finally, several case studies are presented for a better understanding of the workflow, the importance of different steps in the workflow and the deviations in the approach regarding different contexts. In conclusion, we intend to provide designers a holistic view of the design process in designing personalized products as well as help practitioners trigger innovations regarding each step of the process.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Emerging MaterialsMechatronic DesignMaterials and ManufacturingApplied Ergonomics and Desig
    corecore