54 research outputs found

    Cool and save: Cooling aware dynamic workload scheduling in multi-socket CPU systems

    Full text link
    Abstract — Traditionally CPU workload scheduling and fan control in multi-socket systems have been designed sep-arately leading to less efficient solutions. In this paper we present Cool and Save, a cooling aware dynamic workload management strategy that is significantly more energy ef-ficient than state-of-the art solutions in multi-socket CPU systems because it performs workload scheduling in tan-dem with controlling socket fan speeds. Our experimental results indicate that applying our scheme gives average fan energy savings of 73 % concurrently with reducing the max-imum fan speed by 53%, thus leading to lower vibrations and noise levels. I

    Power and Reliability Management of SoCs

    Get PDF
    Today's embedded systems integrate multiple IP cores for processing, communication, and sensing on a single die as systems-on-chip (SoCs). Aggressive transistor scaling, decreased voltage margins and increased processor power and temperature have made reliability assessment a much more significant issue. Although reliability of devices and interconnect has been broadly studied, in this work, we study a tradeoff between reliability and power consumption for component-based SoC designs. We specifically focus on hard error rates as they cause a device to permanently stop operating. We also present a joint reliability and power management optimization problem whose solution is an optimal management policy. When careful joint policy optimization is performed, we obtain a significant improvement in energy consumption (40%) in tandem with meeting a reliability constraint for all SoC operating temperatures

    GentleCool: Cooling aware proactive workload scheduling in multi-machine systems

    Full text link
    Abstract—In state of the art systems, workload scheduling and server fan speed operate independently leading to cooling inefficiencies. In this work we propose GentleCool, a proactive multi-tier approach for significantly lowering the fan cooling costs without compromising the performance. Our technique manages the fan speed through intelligently allocating the workload across different machines. The experimental results show our approach delivers average cooling energy savings of 72 % and improves the mean time between failures (MTBF) of the fans by 2.3X compared to the state of the art. I

    Proactive temperature balancing for low cost thermal management in MPSoCs

    Full text link
    Abstract — Designing thermal management strategies that reduce the impact of hot spots and on-die temperature variations at low performance cost is a very significant challenge for multiprocessor system-on-chips (MPSoCs). In this work, we present a proactive MPSoC thermal man-agement approach, which predicts the future temperature and adjusts the job allocation on the MPSoC to minimize the impact of thermal hot spots and temperature variations without degrading performance. In addition, we implement and compare several reactive and proactive management strategies, and demonstrate that our proactive temperature-aware MPSoC job allocation technique is able to dramatically reduce the adverse effects of temperature at very low performance cost. We show experimental results using a simulator as well as an implementation on an UltraSPARC T1 system. I

    Scheduling Data Delivery in Heterogeneous Wireless Sensor Networks

    Full text link
    In this paper we present a proxy-level scheduler that can significantly improve QoS in heterogeneous wireless sensor networks while at the same time reducing the overall power consumption. Our scheduler is transparent to both applications and MAC in order to take the advantage of the standard off-the-shelf components. The proposed scheduling reduces collisions through a generalized TDMA implementation, and thus improves throughput and QoS, by activating only a subset of stations at a time. Power savings are achieved by scheduling transfer of larger bursts of IP packets followed by longer idle periods during which node’s radio can either enter sleep or be turned off. Our simulation and measurement results show significant power savings with an improvement in QoS. On average we get 18% of saturation throughput enhancement for real traffic and 79 % of power reduction in a highly loaded network

    A Simulation Methodology for Reliability Analysis in Multi-Core SoCs

    Get PDF
    Reliability has become a significant challenge for system design in new process technologies. Higher integration levels dramatically increase power densities, which leads to higher temperature and adverse effects on reliability. In this paper, we introduce a simulation methodology to analyze reliability of multi-core SoCs. The proposed simulator is the first to provide system-on-chip level fine-grained reliability analysis. We use our simulation methodology to study the reliability effects of design choices such as thermal packaging and placement, as well as runtime events such as power management policies and workload distributions

    QubitHD: A Stochastic Acceleration Method for HD Computing-Based Machine Learning

    Full text link
    Machine Learning algorithms based on Brain-inspired Hyperdimensional (HD) computing imitate cognition by exploiting statistical properties of high-dimensional vector spaces. It is a promising solution for achieving high energy-efficiency in different machine learning tasks, such as classification, semi-supervised learning and clustering. A weakness of existing HD computing-based ML algorithms is the fact that they have to be binarized for achieving very high energy-efficiency. At the same time, binarized models reach lower classification accuracies. To solve the problem of the trade-off between energy-efficiency and classification accuracy, we propose the QubitHD algorithm. It stochastically binarizes HD-based algorithms, while maintaining comparable classification accuracies to their non-binarized counterparts. The FPGA implementation of QubitHD provides a 65% improvement in terms of energy-efficiency, and a 95% improvement in terms of the training time, as compared to state-of-the-art HD-based ML algorithms. It also outperforms state-of-the-art low-cost classifiers (like Binarized Neural Networks) in terms of speed and energy-efficiency by an order of magnitude during training and inference.Comment: 8 pages, 7 figures, 3 table

    CryptoPIM: In-memory Acceleration for Lattice-based Cryptographic Hardware

    Get PDF
    Quantum computers promise to solve hard mathematical problems such as integer factorization and discrete logarithms in polynomial time, making standardized public-key cryptography (such as digital signature and key agreement) insecure. Lattice-Based Cryptography (LBC) is a promising post-quantum public-key cryptographic protocol that could replace standardized public-key cryptography, thanks to the inherent post-quantum resistant properties, efficiency, and versatility. A key mathematical tool in LBC is the Number Theoretic Transform (NTT), a common method to compute polynomial multiplication that is the most compute-intensive routine, and which requires acceleration for practical deployment of LBC protocols. In this paper, we propose, a high-throughput Processing In-Memory (PIM) accelerator for NTT-based polynomial multiplier with the support of polynomials with degrees up to 32k. Compared to the fastest FPGA implementation of an NTT-based multiplier, achieves on average 31x throughput improvement with the same energy and only 28% performance reduction, thereby showing promise for practical deployment of LBC

    Dynamic thermal management in 3D multicore architectures

    Get PDF
    Technology scaling has caused the feature sizes to shrink continuously, whereas interconnects, unlike transistors, have not followed the same trend. Designing 3D stack architectures is a recently proposed approach to overcome the power consumption and delay problems associated with the interconnects by reducing the length of the wires going across the chip. However, 3D integration introduces serious thermal challenges due to the high power density resulting from placing computational units on top of each other. In this work, we first investigate how the existing thermal management, power management and job scheduling policies affect the thermal behavior in 3D chips. We then propose a dynamic thermally-aware job scheduling technique for 3D systems to reduce the thermal problems at very low performance cost. Our technique can also be integrated with power management policies to reduce energy consumption while avoiding the thermal hot spots and large temperature variations
    • …
    corecore