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Abstract. Quantum computers promise to solve hard mathematical prob-
lems such as integer factorization and discrete logarithms in polynomial time,
making standardized public-key cryptography (such as digital signature and
key agreement) insecure. Lattice-Based Cryptography (LBC) is a promising
post-quantum public key cryptographic protocol that could replace standard-
ized public key cryptography, thanks to the inherent post-quantum resistant
properties, efficiency, and versatility. A key mathematical tool in LBC is
the Number Theoretic Transform (NTT), a common method to compute
polynomial multiplication that is the most compute-intensive routine, and
which requires acceleration for practical deployment of LBC protocols. In this
paper, we propose , a high-throughput Processing In-Memory (PIM) acceler-
ator for NTT-based polynomial multiplier with the support of polynomials
with degrees up to 32k. Compared to the fastest FPGA implementation of
an NTT-based multiplier, achieves on average 31x throughput improvement
with the same energy and only 28% performance reduction, thereby showing
promise for practical deployment of LBC.
Keywords: Public-Key Cryptography, Lattice-based Cryptography, Acceler-
ation, Number Theoretic Transform, Systolic Array

Lattice-based Cryptography, Acceleration, Number Theoretic Transform, Ho-
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1 Introduction
Shor’s algorithm can solve integer factorization and discrete logarithm in polyno-
mial time [1], which gives the quantum computers the ability to break standardized
public-key crypto-systems based such as RSA and ECC. The response of the cryp-
tography community to such an urgent threat is the introduction and evaluation of
quantum-resistant algorithms. These include lattice-based, multivariate, cryptogra-
phy, hash-based, code-based, supersingular elliptic curve isogeny cryptography [2].
Moreover, the National Institute of Standards and Technology (NIST) announced
a contest in 2017 to select secure candidates for replacing public-key cryptogra-
phy primitives. Among the candidate scheme, Lattice-Based Cryptography (LBC)
schemes are the most promising due to their versatility and superior performance
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for applications such as digital signature and key agreement. Besides the basic
public-key encryption schemes, LBC can be used to realize to construct protocols
to compute on the encryption data, (i.e., homomorphic encryption).

Secure Standard LBC schemes involves expensive matrix-vector multiplications
and large key sizes (e.g., 11kB for Frodo [3]). Compared to Standard LBC schemes,
Ideal LBC schemes are variants that provide better performance and memory
footprint by performing the computation polynomial rings without compromising
security. The hardness of such schemes is based on the Ring Learning With
Error (RLWE) [4] problems, in which polynomial multiplication is the most time-
consuming routine. Polynomial multiplication is usually performed using the
Number Theoretic Transform (NTT), a variant of the Discrete Fourier Transform
(DFT) for finite polynomial rings. The process is slow due to the repeated use of
expensive operations like multiplication and modulo.

However, thousands of these operations can theoretically be implemented in
parallel. An attractive solution for such highly parallel applications is to enable
memory to perform computation [5]. This approach, often called processing in-
memory PIM, reduces communication costs between the processor and memory by
performing most computations directly in memory. Emerging non-volatile memory
(NVM) technology, e.g., resistive memory (memristor), can be effectively used for
various PIM techniques such as in-memory search [6], bit-wise [7] and addition
operations [8, 9]. This enables the memory to perform computations while serving
sufficient storage capacity utilizing superior characteristics of the NVM technology,
such as high density, low-power consumption, and scalability [10]. Previous work
has shown that PIM is highly energy-efficient and fast for data-intensive tasks
[11, 12, 13].

In this work, we design a high-throughput in-memory NTT-based polynomial
multiplier that can be used inside Ideal LBC crypto-systems.

• To the author’s knowledge, this is the first work to propose a PIM architecture
for NTT-based polynomial multiplication.

• We identify key performance bottlenecks in NTT polynomial computation.
We then propose faster in-memory multiplication and modulo operations
in-memory.

• We propose NTT-specific fixed-function switches to overcome the irregular
memory access issue in NTT. Our switches enable parallel data transfer
between multiple NTT stages.

• We design a configurable pipelined architecture, which can support as large
as 32k, accommodating requirements for public-key cryptographic systems
for data at rest and in communication, and data in use (e.g., homomorphic
encryption).

As compared to the fastest FPGA implementation of NTT-based multiplier,
with degrees to support public-key encryption, achieves on average 31x throughput
improvement with the same energy and only 28% performance reduction.
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The rest of the paper is organized as follows: Section 2 provides the background
for LBC and NTT-based multipliers; Sections 3 describes the . Section 4 discusses
the results. Finally, we conclude the paper in Section 5.

2 Background and Related Work

A lattice L ⊂ Rn is defined as all the integer linear combinations of basis vectors
b1, . . . ,bn ∈ Rn. The hardness of the lattice-based schemes are based on two
mathematically hard problems: short integer solution (SIS) and, more commonly,
learning With errors (LWE). Given the pair (A,pk) as a matrix of constants sampled
uniformly at random in Zn

q and the public key, the learning with error problem
is defined as finding the secret key sk, where pk = (A ∗ sk + e) mod q, and e is a
small error vector that is sampled from a Gaussian distribution.

LWE-based schemes are impractical to be implemented on resource-constrained
devices due to their large keys. At the same security level, Ring-LWE (RLWE)
reduces the key size by a factor of n, where n is the degree of the polynomial. In
Ring-LWE (RLWE), a derivation of LWE in which A is implicitly defined as a
vector a in the ring R ≡ Zq[x]/〈xn + 1〉. Arithmetic operations for a Ring-LWE-

Algorithm 1 NTT-based Polynomial Multiplier
1: Initialization: w is the n-th root of unity and φ is the 2n-th root of unity (φ2 = w

mod q); w−1 and φ−1 are the inverse of w modq and φ modq, respectively.
2: Precompute: {wi, w−i, φi, φ−i} . wi, w−i are in reversed order, while φi, φ−i are in

normal order
3: function poly_ntt(A,B)
4: bitrev(A); bitrev(B)
5: for i = 0 to n− 1 do
6: āi ←− aiφ

i; b̄i ←− biφ
i

7: end for
8: Ā←− NTT_GS(ā, w)
9: B̄ ←− NTT_GS(b̄, w)

10: C̄ = Ā.B̄
11: bitrev(C̄)
12: c̄←− NTT_GS(C̄, w−1)
13: for i = 0 to n− 1 do
14: ci ←− c̄iφ

−i

15: end for
16: Return C
17: end function

based scheme are performed over a Zp, the ring of integers modulo p where n
(degree of the polynomial) is a power of two, p is a large prime number, and xn+1

is an irreducible polynomial degree n. The quotient ring Rp includes polynomials
with degree less than n in Zp, that defines Rp = Zp/[xn+1] in which coefficients of
polynomials are in [0,p). Degrees of the polynomials in RLWE-based schemes vary
between 256 [14] and 1024 [15] for public-key encryption and between 2k and 32k
for homomorphic encryption [16].

Polynomial multiplication is commonly computed using the Number Theoretic
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Transform (NTT). Two polynomials (a = a(n − 1) · xn−1 + . . . + a(0) and b =
b(n − 1) · xn−1 + . . . + b(0)) are transformed into the NTT domain (A = A(n −
1) · xn−1 + . . . + A(0) and B = B(n − 1) · xn−1 + . . . + B(0)); multiplication of
the two polynomial is computed as C =

∑n−1
i=0 A(i) · B(i) · xi (coefficient-wise

multiplication). The final result, c = a ∗ b, is computed by applying the the inverse
number theoretic transform (NTT−1) on C. A common method to perform the
number theoretic transform is Gentleman-Sande (GS) [17], which receives the input
in the reverse order and produces the output in the normal order. Similar to [18],
we employ the Gentleman-Sande method to compute both forward and inverse
number theoretic transforms. It involves changing the order of the coefficients in
the vector representation (i.e., bit-reverse). Algorithm 1 describes the NTT-based
polynomial multiplier using the GS method.

Algorithm 2 The Gentleman-Sande in-place NTT algorithm
1: To compute the NTT and NTT−1, twiddle is set to {wi} and {w−i} for all i ∈

[0, n/2− 1], respectively. Output is A in the frequency domain (bit-reversed order).
2: function ntt_gs(A,twiddle)
3: for (i=0;i<log2n;i+=1) do
4: for (idx=0;idx<n/2;id+=1) do
5: st←− idx & ((1<<i)-1)
6: j ←− ((idx & !(1<<i - 1) <<1)&(n-1) + st
7: j

′ ←− j + (1<<i)
8: W ←− twiddle[j>>(i+1)]
9: T ←− A[j]

10: A[j]←− (T + A[j’])mod q
11: A[j′ ]←− W*(T - A[j’])mod q
12: end for
13: end for
14: end function

Previous researches on the acceleration of the NTT-based polynomial multipli-
cations narrow the focus on the area and performance of the polynomial multiplier
for LBC and leave the energy unexplored [19] [20]. Some efforts have evaluated the
energy as well as the area and performance of NTT accelerators [21][22][23][24].
We compare our results to the fastest FPGA implementation of the NTT-based
multiplier in [18] for the vector sizes n ∈ (256, 512, 1024) in terms of performance,
energy, and throughput. Additionally, we report the performance, energy, and
throughput for vector sizes n ∈ (256, 512, 1024, 2k, 4k, 8k, 16k, 32k).

While the works mentioned above try to accelerate NTT, they do not perform
well for higher degree polynomials. Processing higher degree polynomial, even with
NTT, involves a massive amount of computations. Moreover, these computations
are often expensive, involving 64-bit multiplications. Hence, the application
performance suffers due to (i) less than required on-chip memory and (ii) limited
availability of complex cores. Prior work has proposed processing in memory (PIM),
which is an architecture for doing in-situ computation [5, 25, 11].

Recent works in PIM enable highly efficient bitwise operations in memory [9, 25]
and extend these operations to implement complex functions like floating-point
arithmetic [11]. Besides, PIM has been shown to provide large dense memory and
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Figure 1: Digital processing in memory (PIM) overview.

extensively parallel computing. Figure 1 shows high-level implementation of PIM
based on bitwise computation in [9]. The memory block on the left is a crossbar of
ReRAM (resistive RAM) cells, where each row of cells share a wordline, while those
in the same column share a bitline. These cells have two possible states. The cells
change state when the voltage across them crosses a device threshold. A memory
cell is present at the intersection of a wordline and bitline. To implement bitwise
functions, it applies a voltage V at the input bitlines and ground the output bitline.
The result of the computation is generated in the output cell. The operation
performed is dependent on V . Also, the same operation can be executed in parallel
over multiple rows of the block, enabling parallel vector-wide operations. Prior
research designed PIM blocks for application acceleration, e.g., MapReduce based
on 3D stacking [26], nearest neighbor search using computational logics beside
DRAM [6], and parallel graph processing based on 3D DRAM [12]. Several SW
interface designs have also been proposed for heterogeneous computing platforms
to use the accelerators in system and coherently access host memory, e.g., IBM
CAPI [27], Intel HARP [28], and HMC 2.0 [29].

Instead, in this work, we, for the first time, propose , a high-throughput PIM
accelerator for NTT-based polynomial multiplication. The proposed design optimizes
the basic NTT operations, introduced new inter-block switches, and finally uses a
configurable architecture to support polynomial multiplications for polynomials
with degrees up to 32k.

3 for RLWE Polynomial Multiplier

In this section, we detail , a processing in-memory design for NTT-based polyno-
mial multiplier. We start by analyzing the base algorithms to identify the basic
operations involved in their execution. We then show how these operations can be
mapped to PIM. In the end, we put together the individual PIM pieces to present a
high-speed and highly efficient architecture for NTT-based polynomial multiplier.

3.1 Operational Breakdown of Polynomial Multiplication

As discussed in Section 2, Algorithm 1 contains multiple sequential operations.
The computational operations involve element-wise multiplication between two
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vectors and NTT calculation over a vector. While bitrev() only changes the
sequence of data reads and not the data itself. Algorithm 2 shows that NTT is
further composed of element-wise vector addition, subtraction, and multiplication
operations. Hence, NTT-based polynomial multiplication essentially comprises
of bit-reversal and element-wise addition, subtraction, and multiplication. Fur-
ther, each data operation is followed by a modulo operation (mod q) to maintain
consistent bitwidth.

3.2 Mapping Operations to PIM

Section 2 shows that state-of-the-art PIM based designs [11, 25, 30, 31] can imple-
ment arithmetic functions with high parallelism and energy efficiency. Moreover,
using such designs for integer arithmetic, as required in our case, can further
increase their benefits. Integer operations do not involve tracking decimal point
(for fixed-point) or iterative data-dependent shifts (for floating-point). This simple
computation logic of integer operations, combined with the vector-based operations
in polynomial multiplication, make it a suitable candidate for PIM.

3.2.1 Data organization in

A memory block is an array of memory cells, where each memory cell represents a
bit. N continuous memory cells in a row represent an N -bit number, with the first
cell storing the MSB. For a block with r rows and c columns, each row stores c/N
numbers, with the entire block having a capacity of (c/N)× r N -bit numbers.

In PIM, each row has some data columns and some processing columns. While
data columns store inputs and other relevant data like pre-computed factors,
processing columns are primarily used for performing intermediate operations and
storing temporary results. However, the data and processing columns are physically
indistinguishable and their roles can be changed on-the-fly. An input vector with
m N -bit values is stored in data columns such that each N -bit number occupies
the same N columns in m rows. This is illustrated in Figure 2

3.2.2 Polynomial multiplication in

We implement the functions in polynomial multiplication to PIM as follows:
Bit-reversal: Bit-reversal changes the sequence of data read. In the case of

PIM, where an input vector is stored over different rows in a memory block, a
bit-reversal operation is equivalent to changing the row to which a value is written
(shown in Figure 2. This can be easily achieved while writing the vector to the
block. The arrangement can either be hard-coded or be flexible according to the
target application.

Addition/Subtraction: The state-of-the-art PIM designs perform vector-
wide addition. For subtraction, 2’s complement is taken for one of the inputs
(subtrahend) and then addition is performed. We use similar techniques where basic
bitwise operations are cascaded to implement 1-bit adder. Then, these multiple
such 1-bit additions are used to implement an N -bit operation. Although a single
N -bit addition/subtraction may be a slow operation, r of such operations can be
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executed in parallel in a r × c memory block without any additional overhead,
as shown in Figure 2. The latency of N -bit addition is 6N + 1 cycles [9] and for
subtraction is 7N + 1.

Multiplication: An N -bit multiplication operation is broken into simple shift
and addition of partial products. First, the partial products are generated using
bitwise operations and stored in the same row as operands. Because works with bit-
level memory access, instead of explicit data shift, shifting operation is translated
to selecting appropriate columns of memory block. Similar to addition/subtraction,
r multiplication operations can also execute in parallel in a memory block which
provides efficient vector-wide operations. The work in [32] proposed full-precision
multipliers. However, the bitwise operations used by them are expensive. Instead,
we combine the algorithm in [32] with the low latency bitwise operations proposed
in [9]. As a result, N -bit multiplication in takes 6.5N2 − 11.5N + 3 cycles,
significantly less than the 13N2 − 14N + 6 cycles of [32].

Modulo: While addition of two N -bit numbers can result in an (N + 1)-bit
output, a multiplication may give an output with 2N bits. However, to maintain the
consistency in number bitwidth with minimum effect on the algorithmic correctness,
each computation undergoes a modulo operation. Modulo operations traditionally
involve the expensive division operations. To enable modulo operations in memory,
we use Barrett reduction [33] and Montgomery reduction [34] after each addition
and multiplication, respectively. Further, in NTT, the modulo factor (q in our
case) is generally fixed for a specific size of the vector or polynomial’s degree. For
instance, we set q = 12289 for vector sizes of 1024 and 512, according to NewHope
[15], and q = 7681 for vector sizes of 256 and less according to Kyber [14]. For
vector sizes of 2k, 4k, 8k, 16k, and 32k we set q = 786433 according to the Microsoft
SEAL library [16]. We exploit this limited set of possible qs to make reduction
more efficient in PIM. Instead of naively using multiple multiplications, we first
convert these reduce operations into successive shift and add/subtract operations
as shown in Algorithm 3. Since, we have bit-level access, we perform only the
necessary bit-wise computations. For example, in line 15 of Algorithm 3, {v ←− u
& ((1<<18)-1)} resets to 0 all but the 17 LSBs of the output of {u ←− (a<<13) -
(a<<9) + a}. Here, we compute only 17 LSBs of u.

Since q is the same for all the values in a vector, they require same shift (i.e.
same column activations in ) and can hence be completely parallelized over the
entire vector in . For each reduction, latency is dependent on the total number of
bitwise additions involved in it. Table 1 lists the latency of each reduction in .

Table 1: Execution time (cycles) for modulo operation
q 7681 12289 786433

Barrett Reduction 261 239 429
Montgomery Reduction 683 461 1083

3.3 Building Blocks
The two basic building blocks of are PIM-enabled memory block and fixed-function
switch. A memory block implements one phase or stage of the polynomial mul-
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Algorithm 3 Reduction algorithms using shifts and adds. q = 7681 for n ≤256,
q = 12289 for n=512, 1024, and q = 786433 for n≥ 2048

1: function Barrett Reduce(a)
2: if q == 12289 then
3: u←− ((a<<2)+(a)) >> 16; u←−(u<<13) + (u<<12) + u
4: end if
5: if q == 7681 then
6: u←− a>>13; u←− (u<<13) - (u<<9) - u
7: end if
8: if q == 786433 then
9: u←− a>>20; u←− (u<<19) + (u<<18) + u

10: end if
11: Return (a− u)
12: end function
13: function Montgomery Reduction(a)
14: if q == 12289 then
15: u←− (a<<13) + (a<<12) - a; u←− u & ((1<<18)-1)
16: u←− (u<<13) + (u<<12) + u; u←− (u + a)>>18
17: end if
18: if q == 7681 then
19: u←− (a<<13) - (a<<9) + a; u←− u & ((1<<18)-1)
20: u←− (u<<13) - (u<<9) - u; u←− (u + a)>>18
21: end if
22: if q == 786433 then
23: u←− (a<<19) - (a<<18) + a; u←− u & ((1<<32)-1)
24: u←− (u<<19) + (u<<18) - u; u←− (u + a)>>32
25: end if
26: Return u
27: end function

tiplication. Two adjacent memory blocks are connected using the fixed-function
switches as shown in Figure 3 Each memory block is a PIM enabled an array of
512 × 512 memory cells and can process a vector of length 512 at a time. The
fixed-function switches, unlike typical crossbar switches, enable only three types
of connections: a direct rowA-to-rowA, rowA-to-row(A+s), rowA-to-row(A-s). A
fixed-function switch allows just one, the in-hardware-coded value of s. However,
this ‘s’ may be different (but fixed) for different instances of this fixed-function
switch in the hardware. Instead, traditional crossbar switches provide a connection
between any possible input/output combination leading to an exponential increase
in logic requirement with an increase in inputs or outputs. Our fixed-function
crossbar switch has just three logic switches per row. The number of switches per
row is independent of the number of inputs/outputs. These switches can read up to
one entire column of one block and write it to the next block in parallel, requiring
as many cycles as the bitwidth of data. Hence, transferring data between two
blocks in NTT requires only 3*bitwidth cycles, one each for A-to-A, A-to-(A+s),
and A-to-(A-s) transfer.

All computation steps in Algorithm 1 and 2 are implemented using these
building blocks. Each vector-wide data operation along with the involved modulo
reduction is implemented in an independent memory block. Hence, we have a
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Figure 4: Detailed stage-by-stage breakdown of (a) Area-efficient pipeline, (b) naive
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pipeline stage. The slowest stage in a pipeline is colored red.

memory block each for aiφ
i, biφ

i, Ā.B̄, c̄iφ
−i. Then, the log2n stages in NTT uses

a memory block each. Each (NTT) stage block is connected to the next stage
block using the switches.

3.4 Architecture

3.4.1 Pipeline

The block-by-block modular architecture provides an opportunity to increase the
throughput by pipelining. Figure 4a shows the most area-efficient NTT pipeline
for the 16-bit datawidth. Here, the computation and its corresponding modulo
operation are performed in the same block. For 16-bit datatype and n=256, this
results in 2700 cycles per stage. Note that even though the logic performed in each
stage have different latencies, the latency of the slowest stage determines the stage
latency while pipelining. Now, the data computation and its modulo are completely
independent operations and can be performed in separate blocks, leading to the
pipeline shown in Figure 4b and stage latency of 1756 cycles. However, this comes
at the cost of increasing the number of stages and hence, the total latency of
one polynomial multiplication. We further optimized the pipeline by combining
Montgomery reduction, addition/subtraction, and Barrett reduction in the same
stage as shown in Figure 4c. We obtain the final stage latency of 1643 cycles.

3.4.2 Configurable Architecture

consists of a ReRAM memory chip with several memory banks. A set m cascaded
memory blocks map to one memory bank. A memory bank takes in 512 parallel
inputs in the first block and output 512-element wide vector. Hence, it can
only process polynomials with degrees up to 512. However, the degree of the
polynomials in RLWE/FHWE-based schemes generally ranges up to 32k. We
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design architecture such that many of these banks can be dynamically arranged
in the form of bsoft softbanks. A softbank consists of bm parallel memory banks.
Each softbank is responsible for processing vector-wide operations for a polynomial.
Then, two softbanks dynamically form a superbank which completely processes
multiplication between two input polynomials. To enable this configurability, uses
additional switches at the intersection of different banks and softbanks to allows
data communication between them.

We optimize our hardware to support 32k degree polynomials in memory.
A 32k NTT pipeline has 49 blocks (from Figure 4). Hence, each bank has 49
memory blocks. We further need 64 such memory banks for each input polynomial,
requiring 128 memory banks per 32k polynomial multiplication. If the degree of
input polynomial is higher than 32k, divides the inputs into segments of 32k and
iteratively uses the hardware. On the other hand, if the input polynomial degree is
less than 32k, we dynamically configure into multiple superbanks to enable parallel
multiplication of multiple polynomial pairs.

4 Evaluation

4.1 Evaluation Setup

We use an in-house cycle-accurate C++ simulator, which emulates functionality.
We used HSPICE for circuit-level simulations and calculate energy consumption
and performance of all the operations in the 45nm process node. We used System
Verilog and Synopsys Design Compiler to implement and synthesize the controller.
The robustness of all proposed circuits, i.e., interconnect, has been verified by
considering 10% process variations on the size and threshold voltage of transistors
using 5000 Monte Carlo simulations. A maximum of 25.6% reduction in resistance
noise margin was observed for RRAM devices. However, this did not affect the
operations in due to the high ROF F /RON . Here, we adopt a RRAM device with
VTEAM model [35]. The device parameters (listed in [8]) are chosen to fit practical
devices [36] with switching delay of 1.1ns (= cycle time in ). The behavior of
bitwise PIM operations has been demonstrated using a fabricated chip in [37].

4.2 Performance and Energy Consumption of

Figure 5 shows the latency and throughput of both non-pipelined and pipelined
over different degrees of polynomial multiplications (n). The latency of increases
with increase in n, primarily due to the increased number of NTT stages. However,
the pipelined-throughput remains the same for the degrees processed in same
bitwidth. This is because the latency of one stage in depends on bitwidth and not
n. The energy consumption of the design increases with n. This is due to increase
in both the number of stages and well as the amount of parallel computations in
each stage.

As evident from the results, pipelining increases the throughput tremendously
with some latency overhead. For smaller degrees (n ≤ 1024), average throughput
improves by 27.8×, while incurring 29% latency overhead. When is n > 1024,
the throughput improvement increases to 36.3×, with 59.7% increment in latency.
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Figure 6: Comparison of with PIM baselines.

This happens because the latency of multiplication increases exponentially with
the bitwidth of inputs. For n > 1024 (32-bit inputs), the execution time of
multiplication is 6.8× that of the second slowest operation. On the other hand,
for n ≤ 1024 (16-bit inputs), multiplication is just 2.3× slower than the second
slowest operation. Hence, the pipelines is comparatively more balanced in 16-bit
than 32-bit. The energy consumption of increases on average by just 1.6% for the
pipelined design. While pipelining increases the number of stages, the underlying
computations don’t increase. Hence, the total amount of logic is same in both
the pipelined and non-pipelined versions. The small increase in energy is due to
increased block-to-block transfers.

4.3 Comparison with state-of-the-art PIM

To show the efficiency of our optimizations, we compare with multiple PIM baselines.
The first baseline PIM (BP-1) uses the operations proposed in [32], while utilizing
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the same building blocks and architecture as . BP-2 is BP-1 with its N -bit
multiplication replaced with the multiplication in . BP-3 is BP-2 with the reduction
operations converted to shift and adds. Figure 6 shows the latency of the three
baselines and for different degrees of polynomial multiplication. To have a fair
comparison, we compare the baselines with the non-pipelined version of the design.
We observe that BP-2 is on average 1.9× faster than BP-1. This shows that
optimized multiplications significantly improve latency. Moreover, BP-3 is 5.5×
faster than BP-2, which shows that the shift and add based reduction is more
efficient than multiplication based reduction. Finally, is 1.2× faster than BP-3,
showing that modulo reductions are highly optimized. As a result, is 12.7× faster
than the state-of-the-art PIM (BP-1).

4.4 Comparison with CPU and FPGA

Table 2 shows the comparison of the pipelined-in terms of latency, energy, and
throughput to the FPGA (on Xilinx Zynq UltraScale+) and software (on an X86
CPU at 2GHz) implementations. Compare to the CPU implementation, on average
achieves 7.6x, 111x, and 226x improvement in the performance, throughput, and
energy, respectively. For the sizes suitable for public-key encryption (256, 512, and
1024) achieves on average 31x throughput improvement with the same energy and
less than %30 reduction in the performance.

5 Conclusion

The (NTT) is the most time-consuming routine in ideal lattice-based cryptographic
protocols. In this paper we propose a high-throughput Processing-In-Memory
accelerator for NTT-based polynomial multiplication. Our fast energy-efficient
design, , enables fast execution of the polynomial multiplication with the support
of polynomials with degrees up to 32k, accommodating requirements for public key
cryptographic systems for data at rest and in communication, and data in use (e.g.,
homomorphic encryption). achieves on average 31x throughput improvement with
the same energy consumption and 28% latency reduction compare to the fastest
NTT-based polynomial multiplier implemented on FPGA.
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