14 research outputs found

    The first case of multiple pulmonary granulomas with amyloid deposition in a dental technician; a rare manifestation as an occupational lung disease

    No full text
    Abstract Background Occupational lung diseases, such as pneumoconiosis, are one of the health problems of dental workers that have been receiving increasing interest. Pulmonary amyloidosis is a heterogenous group of diseases, and can be classified into primary (idiopathic) and secondary (associated with various inflammatory diseases, hereditary, or neoplastic). To date, the development of pulmonary amyloidosis in dental workers has not been reported. Case presentation A 58-year-old Japanese female presented with chest discomfort and low-grade fever that has persisted for 2 months. She was a dental technician but did not regularly wear a dust mask in the workplace. Chest X ray and computed tomography revealed multiple well-defined nodules in both lungs and fluorodeoxyglucose (FDG)-positron emission tomography revealed abnormal FDG uptake in the same lesions with a maximal standardized uptake value (SUV [max]) of 5.6. We next performed thoracoscopic partial resection of the lesions in the right upper and middle lobes. The histological examination of the specimens revealed granuloma formation with foreign body-type giant cells and amyloid deposition that was confirmed by Congo red staining and direct fast scarlet (DFS) staining that produce apple-green birefringence under crossed polarized light. Because there were no other causes underlying the pulmonary amyloidosis, we performed electron probe X-ray microanalysis (EPMA) of the specimens and the result showed silica deposition in the lesions. Based on these results, we finally diagnosed the patient with pulmonary granulomas with amyloid deposition caused by chronic silica exposure. Afterward, her symptoms were improved and the disease has not progressed for 2 years since proper measures against additional occupational exposure were implemented. Conclusions Our case presented three important clinical insights: First, occupational exposure to silica in a dental workplace could be associated with the development of amyloid deposition in lung. Second, EPMA was useful to reveal the etiology of amyloid deposition in the lungs. Last, proper protection against silica is important to prevent further progression of the disease. In conclusion, our case suggested that occupational exposure to silica should be considered when amyloid deposition of unknown etiology is found in the lungs of working or retired adults

    Myriad Functions of Stanniocalcin-1 (STC1) Cover Multiple Therapeutic Targets in the Complicated Pathogenesis of Idiopathic Pulmonary Fibrosis (IPF)

    No full text
    Idiopathic pulmonary fibrosis (IPF) is an intractable disease for which the pathological findings are characterized by temporal and spatial heterogeneity. The pathogenesis is composed of myriad factors, including repetitive injuries to epithelial cells, alterations in immunity, the formation of vascular leakage and coagulation, abnormal wound healing, fibrogenesis, and collagen accumulation. Therefore, the molecular target drugs that are used or attempted for treatment or clinical trials may not cover the myriad therapeutic targets of IPF. In addition, the complicated pathogenesis results in a lack of informative biomarkers to diagnose accurately the status of IPF. These facts point out the necessity of using a combination of drugs, that is, each single drug with molecular targets or a single drug with multiple therapeutic targets. In this review, we introduce a humoral factor, stanniocalcin-1 (STC1), which has myriad functions, including the maintenance of calcium homeostasis, the promotion of early wound healing, uncoupling respiration (aerobic glycolysis), reepithelialization in damaged tissues, the inhibition of vascular leakage, and the regulation of macrophage functions to keep epithelial and endothelial homeostasis, which may adequately cover the myriad therapeutic targets of IPF

    Invasive pulmonary mucormycosis: rare presentation with pulmonary eosinophilia

    No full text
    Abstract Background Fungi can cause a variety of infectious diseases, including invasive mycosis and non-invasive mycosis, as well as allergic diseases. The different forms of mycosis usually have been described as mutually exclusive, independent entities, with few descriptions of overlapping cases. Here, we describe the first reported case of a patient with the complication of pulmonary eosinophilia in the course of invasive mucormycosis. Case presentation A 74-year-old Japanese man with asthma-COPD overlap underwent emergency surgery for a ruptured abdominal aortic aneurysm. The surgery was successful, but fever and worsening dyspnea appeared and continued from postoperative day (POD) 10. A complete blood count showed leukocytosis with neutrophilia and eosinophilia, and the chest X-ray showed consolidation of the left upper lung at POD 15. We suspected nosocomial pneumonia together with an exacerbation of the asthma-COPD overlap, and both antibiotics and bronchodilator therapy were initiated. However, the symptoms, eosinophilia and imaging findings deteriorated. We then performed a bronchoscopy, and bronchoalveolar lavage (BAL) fluid analysis revealed an increased percentage of eosinophils (82% of whole cells) as well as filamentous fungi. We first suspected that this was a case of allergic bronchopulmonary mycosis (ABPM) caused by Aspergillus infection and began corticosteroid therapy with an intravenous administration of voriconazole at POD 27. However, the fungal culture examination of the BAL fluid revealed mucormycetes, which were later identified as Cunninghamella bertholletiae by PCR and DNA sequencing. We then switched the antifungal agent to liposomal amphotericin B for the treatment of the pulmonary mucormycosis at POD 29. Despite replacing voriconazole with liposomal amphotericin B, the patient developed septic shock and died at POD 39. The autopsy revealed that filamentous fungi had invaded the lung, heart, thyroid glands, kidneys, and spleen, suggesting that disseminated mucormycosis had occurred. Conclusions We describe the first reported case of pulmonary mucormycosis with pulmonary eosinophilia caused by Cunninghamella bertholletiae, which resulted in disseminated mucormycosis. Although it is a rather rare case, two important conclusions can be drawn: i) mycosis can simultaneously cause both invasive infection and a host allergic reaction, and ii) Cunninghamella bertholletiae rarely infects immunocompetent patients

    OX40 ligand newly expressed on bronchiolar progenitors mediates influenza infection and further exacerbates pneumonia

    Get PDF
    Influenza virus epidemics potentially cause pneumonia, which is responsible for much of the mortality due to the excessive immune responses. The role of costimulatory OX40-OX40 ligand (OX40L) interactions has been explored in the non-infectious pathology of influenza pneumonia. Here, we describe a critical contribution of OX40L to infectious pathology, with OX40L deficiency, but not OX40 deficiency, resulting in decreased susceptibility to influenza viral infection. Upon infection, bronchiolar progenitors increase in number for repairing the influenza-damaged epithelia. The OX40L expression is induced on the progenitors for the antiviral immunity during the infectious process. However, these defense-like host responses lead to more extensive infection owing to the induced OX40L with -2,6 sialic acid modification, which augments the interaction with the viral hemagglutinin. In fact, the specific antibody against the sialylated site of OX40L exhibited therapeutic potency in mitigating the OX40L-mediated susceptibility to influenza. Our data illustrate that the influenza-induced expression of OX40L on bronchiolar progenitors has pathogenic value to develop a novel therapeutic approach against influenza

    OX

    No full text
    Influenza virus epidemics potentially cause pneumonia, which is responsible for much of the mortality due to the excessive immune responses. The role of costimulatory OX40–OX40 ligand (OX40L) interactions has been explored in the non‐infectious pathology of influenza pneumonia. Here, we describe a critical contribution of OX40L to infectious pathology, with OX40L deficiency, but not OX40 deficiency, resulting in decreased susceptibility to influenza viral infection. Upon infection, bronchiolar progenitors increase in number for repairing the influenza‐damaged epithelia. The OX40L expression is induced on the progenitors for the antiviral immunity during the infectious process. However, these defense‐like host responses lead to more extensive infection owing to the induced OX40L with α‐2,6 sialic acid modification, which augments the interaction with the viral hemagglutinin. In fact, the specific antibody against the sialylated site of OX40L exhibited therapeutic potency in mitigating the OX40L‐mediated susceptibility to influenza. Our data illustrate that the influenza‐induced expression of OX40L on bronchiolar progenitors has pathogenic value to develop a novel therapeutic approach against influenza
    corecore