5 research outputs found

    Dynamic modeling of spindle-rolling bearings systems in peripheral milling operations

    Get PDF
    In High-Speed Milling Process (HSM) the machining precision is directly affected by spindle bearing system which has a crucial role and it impacts directly the dynamic performance of the machining system. This study is about an accurate simulation of such system response. In fact, the Timoshenko beam theory with different circular sections is used to propose a finite element model of the spindle system. The effect of the rolling bearings and the gyroscopic moment at high speeds as well as the centrifugal forces and the cutting forces are considered in the formulation. The rigid and flexible movements of the spindle are taken into account. The dynamic responses of tool-tip under the dynamic cutting forces are numerically investigated

    Robustness study of the road profile estimation technique under uncertainty

    No full text
    This paper studies profile estimation a road. The prediction has been achieved using the Independent Component Analysis Method (ICA). The vehicle dynamic responses were cal- culated for different road profiles which were defined using an ISO norm. The robustness of this method was proven by implementing the stochastic Monte Carlo (MC) technique in the presence of inevitable uncertainty parameters simultaneously associated with the vehicle mass, spring stiffness and damping for different vehicle speeds and wind values. Convergence was assessed when comparing real profiles to simulated ones. The obtained results prove the efficiency of the ICA in estimating the profile variabilities under uncertainties
    corecore