106 research outputs found

    Evaluation of a Real-Time Control System for Combined Sewer Networks

    Get PDF
    In this study, we evaluated the amount of reduction of the combined sewer overflow (CSO) load using real-time control (RTC) for a combined sewer system region where a storage basin had been constructed. Reduction of the load is especially high when the amount of rainfall is 10mm. Moreover, the amount of BOD load was reduced by 18-26%, and the overflow frequency by 14-29% using on RTC system based on annual analysis. In addition, it was clarified that the effect of the reduction in cost of the RTC system was high as a result of cost-effectiveness analysis. It was confirmed that the introduction in RTC system was effective for reducing the CSO

    Myosin motor Myo1c and its receptor NEMO/IKK-γ promote TNF-α–induced serine307 phosphorylation of IRS-1

    Get PDF
    Tumor necrosis factor-α (TNF-α) signaling through the IκB kinase (IKK) complex attenuates insulin action via the phosphorylation of insulin receptor substrate 1 (IRS-1) at Ser307. However, the precise molecular mechanism by which the IKK complex phosphorylates IRS-1 is unknown. In this study, we report nuclear factor κB essential modulator (NEMO)/IKK-γ subunit accumulation in membrane ruffles followed by an interaction with IRS-1. This intracellular trafficking of NEMO requires insulin, an intact actin cytoskeletal network, and the motor protein Myo1c. Increased Myo1c expression enhanced the NEMO–IRS-1 interaction, which is essential for TNF-α– induced phosphorylation of Ser307–IRS-1. In contrast, dominant inhibitory Myo1c cargo domain expression diminished this interaction and inhibited IRS-1 phosphorylation. NEMO expression also enhanced TNF-α–induced Ser307–IRS-1 phosphorylation and inhibited glucose uptake. In contrast, a deletion mutant of NEMO lacking the IKK-β–binding domain or silencing NEMO blocked the TNF-α signal. Thus, motor protein Myo1c and its receptor protein NEMO act cooperatively to form the IKK–IRS-1 complex and function in TNF-α–induced insulin resistance

    Effects of Titanium Dioxide Nanoparticle Aggregate Size on Gene Expression

    Get PDF
    Titanium dioxide (titania) nanoparticle aggregation is an important factor in understanding cytotoxicity. However, the effect of the aggregate size of nanoparticles on cells is unclear. We prepared two sizes of titania aggregate particles and investigated their biological activity by analyzing biomarker expression based on mRNA expression analysis. The aggregate particle sizes of small and large aggregated titania were 166 nm (PDI = 0.291) and 596 nm (PDI = 0.417), respectively. These two size groups were separated by centrifugation from the same initial nanoparticle sample. We analyzed the gene expression of biomarkers focused on stress, inflammation, and cytotoxicity. Large titania aggregates show a larger effect on cell viability and gene expression when compared with the small aggregates. This suggests that particle aggregate size is related to cellular effects

    Single Neurons in M1 and Premotor Cortex Directly Reflect Behavioral Interference

    Get PDF
    Some motor tasks, if learned together, interfere with each other's consolidation and subsequent retention, whereas other tasks do not. Interfering tasks are said to employ the same internal model whereas noninterfering tasks use different models. The division of function among internal models, as well as their possible neural substrates, are not well understood. To investigate these questions, we compared responses of single cells in the primary motor cortex and premotor cortex of primates to interfering and noninterfering tasks. The interfering tasks were visuomotor rotation followed by opposing visuomotor rotation. The noninterfering tasks were visuomotor rotation followed by an arbitrary association task. Learning two noninterfering tasks led to the simultaneous formation of neural activity typical of both tasks, at the level of single neurons. In contrast, and in accordance with behavioral results, after learning two interfering tasks, only the second task was successfully reflected in motor cortical single cell activity. These results support the hypothesis that the representational capacity of motor cortical cells is the basis of behavioral interference and division between internal models

    Aldosterone Antagonists in Monotherapy Are Protective against Streptozotocin-Induced Diabetic Nephropathy in Rats

    Get PDF
    Angiotensin converting enzyme inhibitors (ACEi) and angiotensin II receptor blockers (ARB) are the standard clinical therapy of diabetic nephropathy (DN), while aldosterone antagonists are only used as adjuncts. Previously in experimental DN we showed that Na/K ATPase (NKA) is mislocated and angiotensin II leads to superimposed renal progression. Here we investigated the monotherapeutic effect of aldosterone blockers on the progression of DN and renal NKA alteration in comparison to ACEi and ARBs. Streptozotocin-diabetic rats developing DN were treated with aldosterone antagonists; ACEi and ARB. Renal function, morphology, protein level and tubular localization of NKA were analyzed. To evaluate the effect of high glucose per se; HK-2 proximal tubular cells were cultured in normal or high concentration of glucose and treated with the same agents. Aldosterone antagonists were the most effective in ameliorating functional and structural kidney damage and they normalized diabetes induced bradycardia and weight loss. Aldosterone blockers also prevented hyperglycemia and diabetes induced increase in NKA protein level and enzyme mislocation. A monotherapy with aldosterone antagonists might be as, or more effective than ACEi or ARBs in the prevention of STZ-induced DN. Furthermore the alteration of the NKA could represent a novel pathophysiological feature of DN and might serve as an additional target of aldosterone blockers

    インスリンシグナル伝達を制御する転写因子EPAS1

    No full text

    Treatment of Molasses Wastewater by Ozonation and Biological Treatment

    No full text
    corecore