32 research outputs found
Global dynamics of a stage-structured hantavirus infection model with seasonality
In this paper, we study a time-periodic model, which incorporates seasonality and host stage-structure. This model describes the propagation of Puumala hantavirus within the bank vole population of Clethrionomys glareolus. The basic reproduction number R0 is obtained. By appealing to the theory of monotone dynamical systems and chain transitive sets, we establish a threshold-type result on the global dynamics in terms of R0, that is, the virus-free periodic solution is globally attractive, and the virus dies out if R0 ≤ 1, while there exists a unique positive periodic solution, which is globally attractive, and the virus persists if R0 > 1. Numerical simulations are given to confirm our theoretical results and to show that cleaning environment and controlling the grow of mice population are essential control strategies to reduce hantavirus infection
Stability and Hopf Bifurcation Analysis of a Plant Virus Propagation Model with Two Delays
To understand the interaction between the insects and the plants, a system of delay differential equations is proposed and studied. We prove that if R0≤1, the disease-free equilibrium is globally asymptotically stable for any length of time delays by constructing a Lyapunov functional, and the system admits a unique endemic equilibrium if R0>1. We establish the sufficient conditions for the stability of the endemic equilibrium and existence of Hopf bifurcation. Using the normal form theory and center manifold theorem, the explicit formulae which determine the stability, direction, and other properties of bifurcating periodic solutions are derived. Some numerical simulations are given to confirm our analytic results
Modeling and Analyzing the Transmission Dynamics of HBV Epidemic in Xinjiang, China.
Hepatitis B is an infectious disease caused by the hepatitis B virus (HBV) which affects livers. In this paper, we formulate a hepatitis B model to study the transmission dynamics of hepatitis B in Xinjiang, China. The epidemic model involves an exponential birth rate and vertical transmission. For a better understanding of HBV transmission dynamics, we analyze the dynamic behavior of the model. The modified reproductive number σ is obtained. When σ < 1, the disease-free equilibrium is locally asymptotically stable, when σ > 1, the disease-free equilibrium is unstable and the disease is uniformly persistent. In the simulation, parameters are chosen to fit public data in Xinjiang. The simulation indicates that the cumulated HBV infection number in Xinjiang will attain about 600,000 cases unless there are stronger or more effective control measures by the end of 2017. Sensitive analysis results show that enhancing the vaccination rate for newborns in Xinjiang is very effective to stop the transmission of HBV. Hence, we recommend that all infants in Xinjiang receive the hepatitis B vaccine as soon as possible after birth
A Periodic West Nile Virus Transmission Model with Stage-Structured Host Population
In this paper, we study an avian (host) stage-structured West Nile virus model, which incorporates seasonality as well as stage-specific mosquito biting rates. We first introduce the basic reproduction number R0 for this model and then show that the disease-free periodic solution is globally asymptotically stable when R01. In the case where all coefficients are constants, for a special case, we obtain the global stability of the disease-free equilibrium, the uniqueness of the endemic equilibrium, and the permanence of the disease in terms of the basic reproduction number R0. Numerical simulations are carried out to verify the analytic result. Some sensitivity analysis of R0 is performed. Our finding shows that an increase in juvenile exposure will lead to more severe transmission. Moreover, we find that the ignorance of the seasonality may result in underestimation of the basic reproduction number R0
Extinction in Nonautonomous Discrete Lotka-Volterra Competitive System with Pure Delays and Feedback Controls
The paper discusses a nonautonomous discrete time Lotka-Volterra competitive system with pure delays and feedback controls. New sufficient conditions for which a part of the n-species is driven to extinction are established by using the method of multiple discrete Lyapunov functionals
Dynamics of a Predator-Prey Model with Fear Effect and Time Delay
In this paper, we propose a time-delayed predator-prey model with Holling-type II functional response, which incorporates the gestation period and the cost of fear into prey reproduction. The dynamical behavior of this system is both analytically and numerically investigated from the viewpoint of stability, permanence, and bifurcation. We found that there are stability switches, and Hopf bifurcations occur when the delay Ï„ passes through a sequence of critical values. The explicit formulae which determine the direction, stability, and other properties of the bifurcating periodic solutions are given by using the normal form theory and center manifold theorem. We perform extensive numerical simulations to explore the impact of some important parameters on the dynamics of the system. Numerical simulations show that high levels of fear have a stabilizing effect while relatively low levels of fear have a destabilizing effect on the predator-prey interactions which lead to limit-cycle oscillations. We also found that the model with or without a delay-dependent factor can have a significantly different dynamics. Thus, ignoring the delay or not including the delay-dependent factor might result in inaccurate modelling predictions
Monthly new reported HBV case in Xinjinag from 2004 to 2012.
<p>The Data was obtained from the website of public health science data center.</p
The demographic data from 2004 to 2012 for Xinjiang(unit: ten thousand).
<p>The demographic data from 2004 to 2012 for Xinjiang(unit: ten thousand).</p
The influence of the parameter <i>ω</i> on the ratio of hepatitis B carrier (CN).
<p>
<math><mrow><mi>C</mi><mi>N</mi></mrow></math> in terms of different values of ω.</p