26 research outputs found

    TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy

    No full text
    Angiotensin (Ang) II participates in the pathogenesis of heart failure through induction of cardiac hypertrophy. Ang II-induced hypertrophic growth of cardiomyocytes is mediated by nuclear factor of activated T cells (NFAT), a Ca(2+)-responsive transcriptional factor. It is believed that phospholipase C (PLC)-mediated production of inositol-1,4,5-trisphosphate (IP(3)) is responsible for Ca(2+) increase that is necessary for NFAT activation. However, we demonstrate that PLC-mediated production of diacylglycerol (DAG) but not IP(3) is essential for Ang II-induced NFAT activation in rat cardiac myocytes. NFAT activation and hypertrophic responses by Ang II stimulation required the enhanced frequency of Ca(2+) oscillation triggered by membrane depolarization through activation of DAG-sensitive TRPC channels, which leads to activation of L-type Ca(2+) channel. Patch clamp recordings from single myocytes revealed that Ang II activated DAG-sensitive TRPC-like currents. Among DAG-activating TRPC channels (TRPC3, TRPC6, and TRPC7), the activities of TRPC3 and TRPC6 channels correlated with Ang II-induced NFAT activation and hypertrophic responses. These data suggest that DAG-induced Ca(2+) signaling pathway through TRPC3 and TRPC6 is essential for Ang II-induced NFAT activation and cardiac hypertrophy

    Phosphodiesterase 5 inhibition blocks pressure overload-induced cardiac hypertrophy independent of the calcineurin pathway

    No full text
    Aims: Cyclic GMP (cGMP)-specific phosphodiesterase 5 (PDE5) inhibition by sildenafil (SIL) activates myocardial cGMP-dependent protein kinase G (PKG) and blunts cardiac hypertrophy. To date, the only documented target of PKG in myocardium is the serine-threonine phosphatase calcineurin (Cn), which is central to pathological cardiac hypertrophy. We tested whether Cn suppression is necessary in order to observe anti-hypertrophic effects of SIL. Methods and results: Mice lacking the Cn-Aβ subunit (CnAβ -/-) and wild-type (WT) controls were subjected to transverse aorta constriction (TAC) with or without SIL (200 mg/kg/day, p.o.) for 3 weeks. TAC-induced elevation of Cn expression and activity in WT was absent in CnAβ-/- hearts, and the latter accordingly developed less cardiac hypertrophy (50 vs. 100% increase in heart weight/tibia length, P<0.03) and chamber dilation. SIL remained effective in CnAβ-/- mice, increasing PKG activity similarly as in WT, suppressing hypertrophy and fetal gene expression, and enhancing heart function without altering afterload. TAC-stimulated calcium-calmodulin kinase II, Akt, and glycogen synthase kinase 3β in both groups (the first rising more in CnAβ-/- hearts), and SIL also suppressed these similarly. Activation of extracellular signal-regulated kinase observed in WT-TAC but not CnAβ-/- hearts was also suppressed by SIL. Conclusion: PDE5A inhibition and its accompanying PKG activation blunt hypertrophy and improve heart function even without Cn activation. This occurs by its modulation of several alternative pathways which may result from concomitant distal targeting, or activity against a common proximal node.9 page(s
    corecore