5 research outputs found

    Metabolomic Associations with Serum Bone Turnover Markers

    No full text
    Bone is a dynamic tissue that is in a constant state of remodeling. Bone turnover markers (BTMs), procollagen type I N-terminal propeptide (P1NP) and C-terminal telopeptides of type I collagen (CTX), provide sensitive measures of bone formation and resorption, respectively. This study used ultra-high-resolution metabolomics (HRM) to determine plasma metabolic pathways and targeted metabolites related to the markers of bone resorption and formation in adults. This cross-sectional clinical study included 34 adults (19 females, mean 27.8 years), without reported illnesses, recruited from a US metropolitan area. Serum BTM levels were quantified by an ELISA. Plasma HRM utilized dual-column liquid chromatography and mass spectrometry to identify metabolites and metabolic pathways associated with BTMs. Metabolites significantly associated with P1NP (p < 0.05) were significantly enriched in pathways linked to the TCA cycle, pyruvate metabolism, and metabolism of B vitamins important for energy production (e.g., niacin, thiamin). Other nutrition-related metabolic pathways associated with P1NP were amino acid (proline, arginine, glutamate) and vitamin C metabolism, which are important for collagen formation. Metabolites associated with CTX levels (p < 0.05) were enriched within lipid and fatty acid beta-oxidation metabolic pathways, as well as fat-soluble micronutrient pathways including, vitamin D metabolism, vitamin E metabolism, and bile acid biosynthesis. P1NP and CTX were significantly related to microbiome-related metabolites (p < 0.05). Macronutrient-related pathways including lipid, carbohydrate, and amino acid metabolism, as well as several gut microbiome-derived metabolites were significantly related to BTMs. Future research should compare metabolism BTMs relationships reported here to aging and clinical populations to inform targeted therapeutic interventions

    Newborn metabolomic signatures of maternal per- and polyfluoroalkyl substance exposure and reduced length of gestation

    No full text
    Abstract Marginalized populations experience disproportionate rates of preterm birth and early term birth. Exposure to per- and polyfluoroalkyl substances (PFAS) has been reported to reduce length of gestation, but the underlying mechanisms are unknown. In the present study, we characterized the molecular signatures of prenatal PFAS exposure and gestational age at birth outcomes in the newborn dried blood spot metabolome among 267 African American dyads in Atlanta, Georgia between 2016 and 2020. Pregnant people with higher serum perfluorooctanoic acid and perfluorohexane sulfonic acid concentrations had increased odds of an early birth. After false discovery rate correction, the effect of prenatal PFAS exposure on reduced length of gestation was associated with 8 metabolomic pathways and 52 metabolites in newborn dried blood spots, which suggested perturbed tissue neogenesis, neuroendocrine function, and redox homeostasis. These mechanisms explain how prenatal PFAS exposure gives rise to the leading cause of infant death in the United States
    corecore