5,458 research outputs found

    Alterations in Lipids and Adipocyte Hormones in Female-to-Male Transsexuals

    Get PDF
    Testosterone therapy in men and women results in decreased high-density lipoprotein cholesterol (HDL) and increased low-density lipoprotein cholesterol (LDL). We sought to determine whether testosterone therapy has this same effect on lipid parameters and adipocyte hormones in female-to-male (FTM) transsexuals. Twelve FTM transsexuals provided a fasting lipid profile including serum total cholesterol, HDL, LDL, and triglycerides prior to and after 1 year of testosterone therapy (testosterone enanthate or cypionate 50ā€“125mg IM every two weeks). Subjects experienced a significant decrease in mean serum HDL (52 Ā± 11 to 40 Ā± 7mg/dL) (P < .001). The mean LDL (P = .316), triglyceride (P = .910), and total cholesterol (P = .769) levels remained unchanged. In a subset of subjects, we measured serum leptin levels which were reduced by 25% but did not reach statistical significance (P =.181) while resistin levels remained unchanged. We conclude that testosterone therapy in FTM transsexuals can promote an increased atherogenic lipid profile by lowering HDL and possibly reduce serum leptin levels. However, long-term studies are needed to determine whether decreases in HDL result in adverse cardiovascular outcomes.National Institutes of Health (M01RR000533

    Novel Vitamin D Analogs for Prostate Cancer Therapy

    Get PDF
    Prostate cells contain specific receptors for 1Ī±,25-dihydroxyvitamin D [1Ī±,25(OH)2D] or calcitriol, the active form of vitamin D. 1Ī±,25(OH)2D is known to inhibit the proliferation and invasiveness of prostate cancer cells. These findings support the use of 1Ī±,25(OH)2D for prostate cancer therapy. However, 1Ī±,25(OH)2D can cause hypercalcemia, analogs of 1Ī±,25(OH)2D that are less calcemic but exhibit potent antiproliferative activity would be attractive as therapeutic agents. To accomplish these goals, different strategies, based on metabolism, molecular mechanism of actions, and structural modeling, have been taken to modify the structure of vitamin D molecule with the aims to improve the efficacy and decrease the toxicity of vitamin D to treat different diseases. During the past four decades, over 3,000 analogs have been synthesized. In this paper, we discuss the development and the biological analysis of a unique class of vitamin D analogs with a substitution at the carbon 2 of 19-nor-1Ī±,25(OH)2D3 molecule for potential application to the prevention and treatment of prostate cancer as well as other cancers

    Floating-disk parylene microvalve for self-regulating biomedical flow controls

    Get PDF
    A novel self-regulating parylene micro valve is presented in this paper with potential applications for biomedical flow controls. Featuring a free-floating bendable valve disk and two-level valve seat, this surface-micromachined polymeric valve accomplishes miniature pressure/flow rate regulation in a band-pass profile stand-alone without the need of power sources or active actuation. Experimental data of underwater testing results have successfully demonstrated that the microfabricated in-channel valve can regulate water flow at 0-80 mmHg and 0-10 ĀµL/min pressure/flow rate level, which is perfectly suitable for biomedical and lab-on-a-chip applications. For example, such biocompatible microvalve can be incorporated in ocular implants for control of eye fluid drainage to fulfill intraocular pressure (IOP) regulation in glaucoma patients

    Microfabricated Implantable Parylene-Based Wireless Passive Intraocular Pressure Sensors

    Get PDF
    This paper presents an implantable parylene-based wireless pressure sensor for biomedical pressure sensing applications specifically designed for continuous intraocular pressure (IOP) monitoring in glaucoma patients. It has an electrical LC tank resonant circuit formed by an integrated capacitor and an inductor coil to facilitate passive wireless sensing using an external interrogating coil connected to a readout unit. Two surface-micromachined sensor designs incorporating variable capacitor and variable capacitor/inductor resonant circuits have been implemented to realize the pressure-sensitive components. The sensor is monolithically microfabricated by exploiting parylene as a biocompatible structural material in a suitable form factor for minimally invasive intraocular implantation. Pressure responses of the microsensor have been characterized to demonstrate its high pressure sensitivity (> 7000 ppm/mmHg) in both sensor designs, which confirms the feasibility of pressure sensing with smaller than 1 mmHg of resolution for practical biomedical applications. A six-month animal study verifies the in vivo bioefficacy and biostability of the implant in the intraocular environment with no surgical or postoperative complications. Preliminary ex vivo experimental results verify the IOP sensing feasibility of such device. This sensor will ultimately be implanted at the pars plana or on the iris of the eye to fulfill continuous, convenient, direct, and faithful IOP monitoring

    Vitamin D for the Prevention and Treatment of Pancreatic Cancer

    Get PDF

    Implantable parylene-based wireless intraocular pressure sensor

    Get PDF
    This paper presents a novel implantable, wireless, passive pressure sensor for ophthalmic applications. Two sensor designs incorporating surface-micromachined variable capacitor and variable capacitor/inductor are implemented to realize the pressure sensitive components. The sensor is monolithically microfabricated using parylene as a biocompatible structural material in a suitable form factor for increased ease of intraocular implantation. Pressure responses of the microsensor are characterized on-chip to demonstrate its high pressure sensitivity (> 7000 ppm/mmHg) with mmHg level resolution. An in vivo animal study verifies the biostability of the sensor implant in the intraocular environment after more than 150 days. This sensor will ultimately be implanted at the pars plana or iris of the eye to fulfill continuous intraocular pressure (IOP) monitoring in glaucoma patients

    Implantable Unpowered Parylene MEMS Intraocular Pressure Sensor

    Get PDF
    This paper presents the first implantable, unpowered, parylene-based micro-electro-mechanical-systems (MEMS) pressure sensor for intraocular pressure (IOP) sensing. From in situ mechanical deformation of the compliant structures, this sensor registers pressure variations without power consumption/transduction. Micromachined high-aspect-ratio thin-walled tubes in different geometric layouts are exploited to obtain a high-sensitivity pressure response. An integrated packaging method has been successfully developed to realize suture-less implantation of the device. In vitro testing results have demonstrated that the IOP sensor can achieve 0.67 degree/mmHg angular sensitivity with a spiral-tube design, 3.43 Āµm/mmHg lateral sensitivity with a long-armed-tube design, and 0.38 Āµm/mmHg longitudinal sensitivity with a serpentine-tube design. This IOP sensor is designed to be implanted in the anterior chamber of the eye and anchored directly on the iris so that, under incident visible light, the pressure response of the implant can be directly observed from outside the eye, which enables faithful and unpowered IOP monitoring in glaucoma patient

    Verification of a localization criterion for several disordered media

    Full text link
    We analytically compute a localization criterion in double scattering approximation for a set of dielectric spheres or perfectly conducting disks uniformly distributed in a spatial volume which can be either spherical or layered. For every disordered medium, we numerically investigate a localization criterion, and examine the influence of the system parameters on the wavelength localization domains.Comment: 30 pages, LateX, amstex, revtex styles, 20 figure

    Electromagnetic modes of Maxwell fisheye lens

    Full text link
    We provide an analysis of the radial structure of TE and TM modes of the Maxwell fisheye lens, by means of Maxwell equations as applied to the fisheye case. Choosing a lens of size R = 1 cm, we plot some of the modes in the infrared range.Comment: 2+6 pages in Latex, 3 figures to be found in the published referenc
    • ā€¦
    corecore