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1. Introduction 

Pancreatic adenocarcinoma (PCA), although infrequent, is one of the most lethal human 
malignancies. PCA ranks fourth in the Western countries and sixth worldwide among the 
most common cancer-related mortality based on GLOBOCAN 2008 (Jemal et al. 2011). 
Worldwide, an estimated 277,000 new cases of PCA were diagnosed in 2008 (Ferlay et al. 
2008). In 2011, 44,000 new cases of PCA will be identified and 37,700 individuals will die 
from this disease in the US (Siegel et al. 2011). The nearly 1:1 ratio of incidence to mortality 
clearly implicates a poor prognosis and the lethal nature of PCA, which is the result of the 
difficulty of early diagnosis, early local spread, distant metastasis and resistance to 
traditional chemotherapy and radiotherapy. The overall five-year survival rate is estimated 
to be within the range of 1–4%, much lower than that of other types of cancers (Jemal et al. 
2011). Up to the present time, the standard treatment for PCA is surgical extirpation, which 
may improve the overall five-year survival rate to 10-29% (Trede et al. 1990; Nitecki et al. 
1995; Yeo et al. 1997). However, 40% of PCA patients already had distant metastasis at the 
time of diagnosis and another 40% were diagnosed with locally advanced cancer (Haller 
2003; Jemal et al. 2011; Siegel et al. 2011), excluding them from being good candidates for 
resection.  

Although the definite causes of pancreatic cancer are still poorly understood, several 
environmental risk factors have been implicated. Abundant epidemiological studies have 
indicated that the use of tobacco increases the risk of pancreatic cancer (Raimondi et al. 
2009) and increased incidence of pancreatic cancer is positively associated with frequency 
and length of tobacco exposure (Hassan et al. 2007). A recent study based on a pooled 
analysis also concludes smoking is associated with an 18% increased risk of PCA (Lynch et 
al. 2009). On the other hand, the risk of PCA would dwindle after cessation of cigarette 
smoking for 10 years or longer (Iodice et al. 2008). Although alcohol has been related to 
increased risk of several types of cancers, the exact relationship between alcohol and PCA 
has not been established yet (Rohrmann et al. 2009; Jiao et al. 2009). A pooled analysis of 14 
cohort studies reported a positive relationship between pancreatic cancer and women 
consuming more than 30 g of alcohol per day (Genkinger et al. 2009). A recent meta-analysis 
study also indicates that a 22% increased risk of PCA is observed in subjects with heavy 
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alcohol consumption (> 30g/day) (Tramacere 2010). High caloric intake and obesity are also 
identified to be risk factors for PCA (Reeves et al. 2007; Fryzek et al. 2005; Patel et al. 2005: 
Berrington de Gonzalez et al. 2003). While natural, plant-produced antioxidants, such as 
some flavonoids, are thought of traditional lyas protective factors for some cancers, their 
roles in PCA are still not established (Nothlings et al. 2007). Fruits and vegetables also failed 
to offer definitive protective benefit for PCA in a large-scaled cohort study (Vrieling et al. 
2009). Other risk factors, such as intake of coffee, use of aspirin, previous cholecystectomy, 
and history of diabetes or chronic pancreatitis, although less conclusive, may contribute to 
pancreatic cancer as well (Batty et al. 2009: Landi 2009; Lowenfels & Maisonneuve 2006). 

While investigating the incidence of PCA in different locations, a geographical variation has 
been observed; that is in the northern latitudes, the incidence of pancreatic cancer is three- to 
four-times higher than that in areas closer to equator (Curado et al. 2007). This finding has 
been attributed to sunlight or ultraviolet (UVB) exposure, which is directly related to 
vitamin D synthesis and the main determinant of vitamin D status in humans. In this 
regard, abundant epidemiologic studies have shown that vitamin D status is inversely 
associated with the incidence of some cancers such as prostate, colon and breast (Garland & 
Garland 1980; Gorham et al. 1990; Schwartz & Chen 2005). 

Recently, due to the dismal outcome of PCA treatments and resistance of PCA to available 
chemotherapy and radiotherapy, some new regimens or strategies have been developed. In 
this chapter, we describe the recent findings on the relationship between sunlight, vitamin D 
and pancreatic cancer incidence, the potential role of vitamin D analogues for the prevention 
and treatment of pancreatic cancer, and the metabolism and functions of vitamin D as well 
as a brief history of vitamin D. 

2. Current treatment of pancreatic cancer 

Currently, the standard treatment for resectable pancreatic cancer remains surgery, 
including radically resection of the primary tumor, surrounding tissues, as well as 
neighboring lymph nodes. However, as described above, only 20% of PCA patients are 
suitable candidates for operation when diagnosed with PCA (Haller 2003; Jemal et al. 2011; 
Siegel et al. 2011). After operation, adjuvant chemotherapy with either gemcitabine or a 
combination of fluorouracil and leucovorin is able to improve progression-free period and 
overall survival (Neoptolemos et al. 2004; Oettle et al. 2007; Regine et al. 2008). Combination 
of adjuvant chemotherapy and radiation therapy seems to increase overall survival; 
however, the results are not impressive (Herman et al. 2008). For unresectable pancreatic 
cancer, the principle of treatment is mainly palliative. The standard chemotherapy for this 
group of patients is gemcitamine alone (Renouf & Moore 2010). Once gemcitamine fails to 
provide benefit in this group of patients, according to National Comprehensive Cancer 
Network guidelines, capecitabine, FOLFOX, or a combination of capecitabine and oxliplatin 
should be considered (National Comprehensive Network guidelines 2008). It has been 
reported that in general PCA patients who respond poorly to the first line therapy may have 
an unfavorable response to the second line therapy as well (Herrmann et al. 2007). Recently, 
target therapy has gained attention for the treatment of certain cancers. However, at the 
present time, no suitable target therapy is available against PCA. Under these bleak 
conditions, the development of new therapies to treat PCA should be one of the priorities in 
cancer research. 
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3. History of vitamin D 

The discovery of vitamin D is closely associated with the disease rickets. Rickets was 
prevalent in the 17th century when two English physicians, Daniel Whistler and Francis 
Glisson described this deformality of bone in 1645 and 1650, respectively (Hess 1929). It was 
not until 1822, Sniadecki made an important observation relating the prevalence of rickets to 
locations of residence; lower incidence of rickets was found among children living on farms 
than children living in the city of Warsaw, Poland (Mozolowski, 1939). In 1889, Theodore 
Palm, a medical missionary and epidemiologist, reported that children living near the 
equator did not suffer from rickets and, thus, suggested sunbathing as a possible cure and 
strategy for rickets prevention (Palm 1890). Both of them attributed their finding of 
geographic differences in rickets incidence to varied exposures to sunlight. In 1919, Edward 
Mellanby successfully made dogs rachitic by keeping them indoors and feeding them with 
oats exclusively, followed by curing this disease with cod liver oil (Mellanby 1919). During 
that period, cod liver oil was used to treat night blindness and fracture. Mellanby did not 
know at that time whether the cure of rickets was attributed to the newly discovered 
vitamin A present in cod liver oil (McCollum et al., 1916) or another substance within. It was 
not until 1922 that McCollum clearly demonstrated that the anti-rachitic substance present 
in cod liver oil was a new substance and named it “vitamin D” (McCollum 1922). Around 
the same period, Huldshinsky in 1919 discovered that sunlight exposure could cure rachitic 
children (Huldshinsky 1919). Subsequently, there seemed to be a relationship between the 
cure of rickets by sunlight exposure and vitamin D in the cod liver oil. Steenbock and Black 
(1924) and Hess and Weinstock (1924) then noted independently that UV-irradiated food 
could cure rickets, which suggested that UV light was capable of transforming one 
substance stored in food to cure rickets. In other words, UV irradiation could produce 
vitamin D, which was responsible for the anti-rachitic activity found in food.  

Vitamin D was believed as biologically active for decades until DeLuca’s laboratory showed 
that injected radioactive vitamin D3 disappeared instantly in the circulation of rats and the 
label appeared again later in the blood. The major radioactive compound in the blood was 
isolated and tested for its ability in stimulating intestinal calcium transport (Norman et al. 
1964). His group reported that this unknown compound acted much quicker and had higher 
activity than the parent substance vitamin D3 (Morii et al. 1967), suggesting that vitamin D3 
might be further metabolized to become active. Subsequently, the unknown compound was 
isolated in pure form and identified as 25-hydroxyvitamin D3 [25(OH)D3] in 1968 (Blunt et 
al. 1968). Later, when radioactive 25(OH)D3 was synthesized and injected into rats, several 
more polar metabolites were found and isolated. One of them was shown to stimulate 
intestinal calcium transport much quicker and to a greater extent than 25(OH)D3.The 
compound was identified in 1971, independently by three groups of researchers as 1α,25-
dihydroxyvitamin D3 [1α,25(OH)2D3] (Lawson et al. 1971; Norman et al. 1971; Holick  
et al. 1971). 

Vitamin D3 (cholecalciferol) can be obtained either from the diet, including supplements, or 
synthesized in the skin from the precursor 7-dehydrocholesterol (7-DHC) via sunlight 
exposure (wave length: 290-315 nm). Vitamin D3 is then bound to vitamin D binding protein 
(DBP) and circulates in the blood. After entering the liver, vitamin D3 is hydroxylated by 
vitamin D-25-hydroxylase (25-OHase, mainly CYP2R1) to generate the circulating 
prohormone 25(OH)D3, which has the highest affinity for DBP and is bound to DBP 
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Fig. 1. Source and metabolism of vitamin D in pancreatic cells. 
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in the circulation. The subsequent conversion of 25(OH)D3 to the active form, 1α,25-
dihydroxyvitamin D3 [1α,25(OH)2D3], occurs in the kidneys and is catalyzed by a tightly 
regulated enzyme 25(OH)D-1α-hydroxylase (1α-OHase or CYP27B1). The active form then 
will be bound to DBP in the circulation and transported to its target organs, tissues and cells 
to induce gene transcription, including the up-regulation of CYP24A1 as shown in Figure 2. 
The activation of 25(OH)D3 may also take place in many extra-renal tissues, including 
pancreas, bone, breast, colon, prostate. The extra-renal synthesis of 1α,25(OH)2D may 
explain why serum 25(OH)D level, instead of the circulating level of the active form, 
1α,25(OH)2D, is the index of vitamin D nutritional status. 1α,25(OH)2D3, either obtained 
from the circulation or within the cells in an autocrine fashion, will be hydroxylated by 
CYP24A1 (or 24-OHase) to form 1α,24,25-trihydroxyvitamin D3 [1α,24,25(OH)3D3], the first 
step to inactivate 1α,25(OH)2D3, leading to the formation of calcitroic acid, which is water-
soluble and is secreted in the urine. 

4. Sources and metabolism of vitamin D 

Two major forms of vitamin D exist in nature: vitamin D2 and vitamin D3. Commonly, 
vitamin D2 (ergocalciferol) is produced from ergosterol of yeast and vitamin D3 
(cholecalciferol) is synthesized from 7-dehydrocholesterol (7-DHC) of lanolin. Vitamin D 
(representing D2 and D3) is rare in foods, only few foods contain sufficient vitamin D 
naturally (Chen et al. 2010). Therefore, fortification of vitamin D in foods, like orange juice, 
cheese, cereal and milk, is becoming popular in some countries. For most humans, exposure 
to sunlight remains the major source, accounting for about 90% of vitamin D requirement 
(Chen et al. 2010) (Figure 1). The basal and suprabasal layers of human skin contain 7-DHC, 
which can be converted to pre-vitamin D3 as the skin receives UV irradiation (wavelength 
290–315 nm). Pre-vitamin D3 is further thermoisomerized to vitamin D3 in the skin. Vitamin 
D, obtained from food (may contain vitamin D2 and/or vitamin D3) or synthesized from 
skin after exposure to sunlight, enters the blood circulation carried by vitamin D binding 
protein (DBP). Upon entering the liver, vitamin D is hydroxylated at the C-25, catalyzed by 
vitamin D-25-hydroxylase (25-OHase) (Schuster 2011), to produce 25(OH)D3. 25(OH)D is 
further hydroxylated by the enzyme 1α-OHase or CYP27B1 mainly in the renal proximal 
tubules at the C-1 position to form the active metabolite, 1α,25(OH)2D3. While 1α,25(OH)2D3 

is the active form and is responsible for the various biological activities exerted by vitamin 
D3, 25(OH)D3 is the major circulating form of vitamin D3 and is considered as the most 
reliable index of vitamin D nutritional status. 25(OH)D3 has the highest affinity for DBP and 
circulates as a DBP-bound form in the blood stream. Another renal enzyme, which also 
plays a crucial role in vitamin D metabolism, is 25(OH)D-24-hydroxylase (24-OHase or 
CYP24A1). CYP24A1 is responsible for the degradation of 1α,25(OH)2D3, forming 
1α,24,25(OH)3D3, and thus terminating the actions of 1α,25(OH)2D3. In addition, when there 
is an excess of 25(OH)D3, 24-OHase in the kidneys is capable of converting it into 
24,25(OH)2D3 to prevent the over-production of 1α,25(OH)2D3 (Schuster 2011). Of note, 
originally it was believed that CYP27B1 and CYP24A1 exist exclusively in the kidneys, the 
two enzymes have been found to express in many extra-renal tissues (Zehnder et al. 2001; 
Chen & Holick 2003; Schwartz et al. 2004; Kemmis et al. 2006; Chiang & Chen 2009), 
including the pancreas. Given that anephric individuals have no detectable 1α,25(OH)2D3 in 
their circulation, it is believed that extrarenal-generated 1α,25(OH)2D3 acts and is degraded 
only locally in an autocrine and paracrine manner. This autocrine/paracrine pathway seems 
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to be regulated in a tissue-specific manner and is not associated with systemic calcium 
homeostasis. Based on this theory, once 25(OH)D3 is internalized into the cells, the fate of 
25(OH)D3 may depend on the relative expression levels of CYP27B1 to CYP24A1. In the cells 
with dominant expression of CYP27B1, 25(OH)D3 will be converted to 1α,25(OH)2D3 to exert 
its cellular functions. Meanwhile, the locally generated 1α,25(OH)2D will up-regulate the 
expression of CYP24A1 within the cells to hydroxylate 1α,25(OH)2D3 and excess 25(OH)D3 
to form their respective 24-hydroxylated metabolites leading to their catabolism. On the 
other hand, in cells dominated with the expression of CYP24A1, the generated 1α,25(OH)2D3 
will be degraded very quickly with little or no chance to exert biological actions (Ly et al. 
1999; Schuster 2011). 

5. Functions of vitamin D  

The genomic action of 1α,25(OH)2D is mediated through its binding to vitamin D receptor 
(VDR) to modulate various gene expressions in a cell- and tissue- specific manner (Norman 
2006) (Figure 2). VDR is a member of the nuclear receptor superfamily and is expressed in 
almost all tissues (Hausller et al. 1997). To date, 1α,25(OH)2D3 has been well described to 
exert anti-proliferation, anti-inflammation, pro-differentiation, pro-apoptosis and immune 
regulation in a tissue- and cell-specific manner (Chiang & Chen 2009; Bikle 2009; Adams & 
Hewison 2010). So far, more than 2770 VDR binding sites have been identified within 229 
vitamin D-regulated genes as shown by a Chip-sequencing method (Ramagopalan et al. 
2010). Many cancer cell lines, including prostate, lung, liver, breast, pancreas and liver 
cancers, have been shown to express VDR, and 1α,25(OH)2D3 has been found to have 
growth inhibitory effect on these cells (Colston et al., 1980; Skowronski et al., 1993; Hulla et 
al., 1995; Chen & Holick 2003; Flanagan et al., 2009; Chiang et al., 2009). 

The active form of vitamin D3, 1α,25(OH)2D3, either synthesized in an autocrine fashion or 

obtained from the kidneys, exerts its genomic effects by binding to the VDR/retinoid X 

receptor (RXR) complex on vitamin D response element (VDRE) in the promoter region of 

vitamin D-regulated genes. The transcriptional effects include cell cycle arrest, pro-

differentiation, pro-apoptosis, anti-inflammation, regulation of immune response and etc. 

After 1α,25(OH)2D3 elicits its function, it is then inactivated by CYP24A1. Since many tissues 

possess CYP27B1 and CYP24A1 simultaneously, the internalized 25(OH)D3 can be activated 

or inactivated to form 1α,25(OH)2D3 or 24-25(OH)D3 based on the expression rates of 1α-

OHase to 24-OHase. 

Once 1α,25(OH)2D3 is internalized into cells, it binds to VDR. The liganded VDR then form a 

heterodimer with RXR and binds to VDRE (Tsai & Omalley 1994) located in the promoter 

regions of vitamin D responsive genes to modulate the gene expression. In cancer cells, the 

action mainly leads to the inhibition of cancer growth and the prevention of cancer cells 

from invading to surrounding normal tissues. Mechanistically, the genomic pathways are 

regulated by multiple co-factors (Haussler et al. 1998). The VDR conformational change 

occurs upon 1α,25(OH)2D3 binding to VDR, leading to subsequent phosphorylation, and 

gives rise to the release of co-repressors and the recruitment of co-activators (Tagami et al. 

1998; Li et al. 2007). In addition to the genomic pathways, 1α,25(OH)2D3 has been shown to 

be able to induce instant biologic reaction at the plasma membrane or in the cytoplasm by 

changing transmembrane signals quickly (Norman 2006). 
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Fig. 2. Functions of vitamin D in pancreatic cells 
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This kind of action does not influence gene expression directly, though, its cross-talk with 
varied signaling pathways still can modulate gene transcripton (Losel & Wehling 2003). To 
date, the exact mechanisms for non-genomic actions of 1α,25(OH)2D3 are not well 
understood. Nevertheless, the existence of non-classical membrane VDR has been found to 
be related to the rapid actions (Huhtakangas et al. 2004), including activation of protein 
kinase C and protein phosphatase PP1c. The actions have been shown to result in 
subsequent ion channel activity modulation (Bettoun et al. 2002; Shah et al. 2006), which is 
also implicated in the growth inhibition of cancer cells. 

6. Vitamin D and pancreatic cancer- biological studies 

To date, 1α,25(OH)2D3 has been shown to possess anti-tumor activity in many cancer cells 

expressing VDR through its anti-proliferative, pro-apoptotic, and pro-differentiation actions 

in a cell- and tissue-specific manner. In terms of pancreatic cancer, 1α,25(OH)2D3 has been 

demonstrated to up-regulate the expression of p21 and p27 and down-regulate the 

expression of cyclins A, D1, and E and cyclin dependent kinases 2 and 4, leading to cell cycle 

arrest at G0/G1 phase (Kawa et al. 1997). However, 1α,25(OH)2D3 is known to cause 

hypercalcemia and hypercalciuria side effects when administered systemically. To overcome 

these lethal side effects caused by systemic administration of 1α,25(OH)2D3, thousands of 

1α,25(OH)2D3 analogues have been synthesized in an effort to potentiate its anti-tumor effect 

while decreasing its hypercalcemic activity. Some of them have been found to induce 

greater cell-cycle arrest, differentiation, and/or apoptosis on pancreatic cancer cells in vitro 

and to inhibit tumor growth in the xenograft animal model. For example, 22-oxa-

1α,25(OH)2D3 has been reported to cause growth inhibition on three pancreatic cancer cell 

lines and to inhibit xenografted BxPC-3 cell growth in vivo (Kawa et al. 1996). Similarly, EB-

1089, a well-studied1α,25(OH)2D3 analogue, has been shown to inhibit pancreatic cancer 

growth in vitro and in vivo (Colston et al. 1997; Pettersson 2000), and has been investigated in 

a phase II clinical trial to treat advanced pancreatic cancer. While EB-1089 failed to prolong 

the survival of patients significantly in this trial (Evans et al. 2002), 1α,25(OH)2D3 ( 0.5 g/kg 

) in a combination with docetaxel successfully increased the period of time-to-progress of 

pancreatic cancer in a recently published phase II study enrolling 25 advanced pancreatic 

cancer patients as compared to treatment with docetaxel alone (Blanke et al. 2009). Several 

new analogues have been shown to possess promising results in in vitro studies. For 

example, a VDR-alkylating derivative of 1α,25(OH)2D3, 1α,25-dihydroxyvitamin D3-3-

bromoacetate (1α,25(OH)2D3-3-BE), was able to inhibit pancreatic cancer cell grow at a lower 

concentration and to a greater extent than 1α,25(OH)2D3, especially in combination with 5-

amino-imidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) (Persons et al. 2010). In 

another study, 19-nor-1,25(OH)2D2 (Paricalcitol), which has been approved by the Food 

and Drug Administration for treating secondary hyperparathorodism, has been 

demonstrated to have comparable growth inhibition as 1,25(OH)2D3 in pancreatic cancer in 

vitro and in vivo (Schwartz et al. 2008). Given that 19-nor-1,25(OH)2D2 and 19-nor-

1,25(OH)2D3, are less calcemic analogues of 1α,25(OH)2D3, we have studied a carbon-2 

modified analogue of 19-nor-1,25(OH)2D3, 19-nor-2-(3-hydroxypropyl)-1,25(OH)2D3 or 

MART-10, in pancreatic cancer cells in vitro and found to be 100-1000 times as potent as 

1α,25(OH)2D3 to inhibit tumor cell growth. Most importantly, MART-10 does not increase 

serum calcium in rats (Iglesias-Gato, D. et al, 2011). Furthermore, MART-10 has been shown 
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to be a poor substrate of CYP24A1 and has a lower binding affinity for DBP compared to 

1α,25(OH)2D3, suggesting that this analogue is likely more bio-available than 1α,25(OH)2D3 

in circulation (Flanagan et al. 2009). Thus, MART-10 is a promising compound to treat 

pancreatic cancer. 

7. Epidemiological evidence associating vitamin D and pancreatic cancer  

Circulating vitamin D level, primarily determined by solar UVB exposure and partially 

influenced by food uptake and oral vitamin D supplementation, has been shown to be 

inversely associated with the incidence of many cancers, including prostate, colon and 

breast cancers in a number of epidemiological studies (Garland & Garland 1980; Gorham et 

al., 1990; Schwartz & Chen 2005). Garland et al. (2009) further reported that 58,000 new cases 

of breast cancer and 49000 new cases of colon cancer could be prevented annually through 

vitamin D supplement. In addition, recent studies applying Hill’s criteria for causality also 

clearly showed that UVB exposure and vitamin D status are negatively associated with 

cancer risk (Grant 2009; Grant & Boucher 2009). For pancreatic cancer, its exact relationship 

to vitamin D status has not been well understood. Although two earlier epidemiologic 

studies published in 2006 showed inconsistent findings about the relationship between 

pancreatic cancer incidence and serum 25(OH)D level (Skinner et al. 2006; Stolzenberg-

Solomon et al. 2006), the death rate of pancreatic cancer has been shown to be inversely 

related to sun exposure (Mizoue 2004; Boscoe & Schymura 2006; Grant 2007; Tuohimaa et al. 

2007). More recently, Stoleznberg-Solomon et al. (2010) conducted two pooled nested case 

control studies to investigate the potential association of vitamin D status and pancreatic 

cancer, and reported that the circulating 25(OH)D concentration was not related to the risk 

of pancreatic cancer. Furthermore, Stoleznberg-Solomon et al. showed that a high 25(OH)D 

level, exceeding 100 nmol/L (40 ng/mL), increased pancreatic cancer incidence two folds 

(odds ratio = 2.12, 95% confidence interval: 1.23, 3.64) (Stoleznberg-Solomon et al. 2010). 

However, they did find subjects with lower estimated annual residential solar UVB 

exposure would have higher risk of pancreatic cancer (Stoleznberg-Solomon et al. 2009). The 

reason behind the lack of association between serum levels and pancreatic cancer and other 

cancers maybe that serum 25(OH)D levels were only measured at one time point years prior 

to diagnosis of pancreatic cancer and, in fact, 25(OH)D levels change from season to season. 

For this reason, Yin et al. (2010) conducted case-control studies with zero lag time between 

diagnosis and serum 25(OH)D measurement, not nested studies, and found an inverse 

correlation between serum 25(OH)D level and breast cancer. Mohr SB et al. (2010) also 

demonstrated an inverse association between UVB irradiation and incidence rates of 

pancreatic cancer worldwide. They found that the incidence rate of pancreatic cancer was 

only half in countries with estimated serum 25(OH)D> 30 ng/ml as compared to those with 

serum 25(OH)D ≤ 30 ng/mL. There are other studies also showing inverse relationship 

between UVB and pancreatic cancer (Kato et al. 1985; Giovannucci et al. 2006; Neale et al. 

2009). Interestingly, high insulin and glucose levels have been found to be related to 

pancreatic cancer positively (Hennig et al. 2004; Stolzenberg-Solomon et al. 2005; Huxley et 

al. 2005; Michaud et al. 2007). Since vitamin D is able to regulate the synthesis, binding and 

actions of insulin (Maestro et al. 2000; Maestro et. 2003; Mathieu et al. 2005), there seems to 

be an inverse relationship between pancreatic cancer incidence and vitamin D status. Due to 

these contradictory findings, more careful studies should be conducted to investigate the 
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potential impacts of gene polymorphisms, including VDR, DBP, CYP27B1, and CYP24A1, on 

vitamin D status in order to determine whether adequate vitamin D nutrition has a survival 

and/or a preventive benefit against the pancreatic cancer. 

8. Conclusion 

Pancreatic cancer is often diagnosed at a late stage with a 5-year survival of merely 1-4%. Its 
characteristics of early spread and distant metastasis at the time of diagnosis make it a poor 
candidate for surgical treatment. Moreover, traditional chemotherapy and radiotherapy fail 
to show significant benefit on survival of PCA patients, and no effective target therapy 
against PCA is available at the present time. Since clinicians are faced with the dilemma of 
dealing with advanced PCA, developing new regimens against PCA deserve more attention. 
Vitamin D, originally discovered for treating rickets a century ago, has been found to go 
through a series of hydroxylation steps, leading to the synthesis of the active metabolite, 

1,25(OH)2D. The active metabolite exerts an array of actions through its binding to VDR, 

which is found to exist in almost all tissues in humans. Although 1,25(OH)2D3 possesses 
antitumor effects on many cancer cells in vitro and in vivo, its clinical application is impeded 
by the lethal side effect of hypercalcemia when administered systemically. To overcome this 

drawback, thousands of 1,25(OH)2D3 analogues have been synthesized, and some of them 
have much less calcemic activity and/or a more potent antitumor effect. Regarding 
pancreatic cancer, although several analogues have shown promising antiproliferative effect 
on cells in culture and animal experiments, they fail to offer any benefits in clinical trials. 

However, in combination with docetaxel, 1,25(OH)2D3 was able to prolong the period of 
time-to-progression of patients with advanced pancreatic cancer. Recently, two analogues of 

1,25(OH)2D3, 1,25(OH)2D3-3-BE and MART-10, have been shown to exert much greater 
antiproliferative effect on pancreatic cancer cells in vitro. Under the current situation without 
an effective treatment for the advanced PCA, further investigation of these two analogues in 
animal models and clinical trials is warranted. 
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