36 research outputs found

    Artemisinin-based combination therapy during pregnancy: outcome of pregnancy and infant mortality: a cohort study.

    Get PDF
    BACKGROUND: The World Health Organization (WHO) recommendation of treating uncomplicated malaria during the second and third trimester of pregnancy with an artemisinin-based combination therapy (ACT) has already been implemented by all sub-Saharan African countries. However, there is limited knowledge on the effect of ACT on pregnancy outcomes, and on newborn and infant's health. METHODS: Pregnant women with malaria in four countries (Burkina Faso, Ghana, Malawi and Zambia) were treated with either artemether-lumefantrine (AL), amodiaquine-artesunate (ASAQ), mefloquine-artesunate (MQAS), or dihydroartemisinin-piperaquine (DHA-PQ); 3127 live new-borns (822 in the AL, 775 in the ASAQ, 765 in the MQAS and 765 in the DHAPQ arms) were followed-up until their first birthday. RESULTS: Prevalence of placental malaria and low birth weight were 28.0% (738/2646) and 16.0% (480/2999), respectively, with no significant differences between treatment arms. No differences in congenital malformations (p = 0.35), perinatal mortality (p = 0.77), neonatal mortality (p = 0.21), and infant mortality (p = 0.96) were found. CONCLUSIONS: Outcome of pregnancy and infant survival were similar between treatment arms indicating that any of the four artemisinin-based combinations could be safely used during the second and third trimester of pregnancy without any adverse effect on the baby. Nevertheless, smaller safety differences between artemisinin-based combinations cannot be excluded; country-wide post-marketing surveillance would be very helpful to confirm such findings. Trial registration ClinicalTrials.gov, NCT00852423, Registered on 27 February 2009, https://clinicaltrials.gov/ct2/show/NCT00852423

    Longitudinal estimation of Plasmodium falciparum prevalence in relation to malaria prevention measures in six sub-Saharan African countries.

    Get PDF
    BACKGROUND: Plasmodium falciparum prevalence (PfPR) is a widely used metric for assessing malaria transmission intensity. This study was carried out concurrently with the RTS,S/AS01 candidate malaria vaccine Phase III trial and estimated PfPR over ≤ 4 standardized cross-sectional surveys. METHODS: This epidemiology study (NCT01190202) was conducted in 8 sites from 6 countries (Burkina Faso, Gabon, Ghana, Kenya, Malawi, and Tanzania), between March 2011 and December 2013. Participants were enrolled in a 2:1:1 ratio according to age category: 6 months-4 years, 5-19 years, and ≥ 20 years, respectively, per year and per centre. All sites carried out surveys 1-3 while survey 4 was conducted only in 3 sites. Surveys were usually performed during the peak malaria parasite transmission season, in one home visit, when medical history and malaria risk factors/prevention measures were collected, and a blood sample taken for rapid diagnostic test, microscopy, and haemoglobin measurement. PfPR was estimated by site and age category. RESULTS: Overall, 6401 (survey 1), 6411 (survey 2), 6400 (survey 3), and 2399 (survey 4) individuals were included in the analyses. In the 6 months-4 years age group, the lowest prevalence (assessed using microscopy) was observed in 2 Tanzanian centres (4.6% for Korogwe and 9.95% for Bagamoyo) and Lambaréné, Gabon (6.0%), while the highest PfPR was recorded for Nanoro, Burkina Faso (52.5%). PfPR significantly decreased over the 3 years in Agogo (Ghana), Kombewa (Kenya), Lilongwe (Malawi), and Bagamoyo (Tanzania), and a trend for increased PfPR was observed over the 4 surveys for Kintampo, Ghana. Over the 4 surveys, for all sites, PfPR was predominantly higher in the 5-19 years group than in the other age categories. Occurrence of fever and anaemia was associated with high P. falciparum parasitaemia. Univariate analyses showed a significant association of anti-malarial treatment in 4 surveys (odds ratios [ORs]: 0.52, 0.52, 0.68, 0.41) and bed net use in 2 surveys (ORs: 0.63, 0.68, 1.03, 1.78) with lower risk of malaria infection. CONCLUSION: Local PfPR differed substantially between sites and age groups. In children 6 months-4 years old, a significant decrease in prevalence over the 3 years was observed in 4 out of the 8 study sites. Trial registration Clinical Trials.gov identifier: NCT01190202:NCT. GSK Study ID numbers: 114001

    Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years' follow-up in children in Burkina Faso: a phase 1/2b randomised controlled trial

    Get PDF
    BACKGROUND: Malaria is a leading cause of morbidity and mortality worldwide. We previously reported the efficacy of the R21/Matrix-M malaria vaccine, which reached the WHO-specified goal of 75% or greater efficacy over 12 months in the target population of African children. Here, we report the safety, immunogenicity, and efficacy results at 12 months following administration of a booster vaccination. METHODS: This double-blind phase 1/2b randomised controlled trial was done in children aged 5-17 months in Nanoro, Burkina Faso. Eligible children were enrolled and randomly assigned (1:1:1) to receive three vaccinations of either 5 μg R21/25 μg Matrix-M, 5 μg R21/50 μg Matrix-M, or a control vaccine (the Rabivax-S rabies vaccine) before the malaria season, with a booster dose 12 months later. Children were eligible for inclusion if written informed consent could be provided by a parent or guardian. Exclusion criteria included any existing clinically significant comorbidity or receipt of other investigational products. A random allocation list was generated by an independent statistician by use of block randomisation with variable block sizes. A research assistant from the University of Oxford, independent of the trial team, prepared sealed envelopes using this list, which was then provided to the study pharmacists to assign participants. All vaccines were prepared by the study pharmacists by use of the same type of syringe, and the contents were covered with an opaque label. Vaccine safety, efficacy, and a potential correlate of efficacy with immunogenicity, measured as anti-NANP antibody titres, were evaluated over 1 year following the first booster vaccination. The population in which the efficacy analyses were done comprised all participants who received the primary series of vaccinations and a booster vaccination. Participants were excluded from the efficacy analysis if they withdrew from the trial within the first 2 weeks of receiving the booster vaccine. This trial is registered with ClinicalTrials.gov (NCT03896724), and is continuing for a further 2 years to assess both the potential value of additional booster vaccine doses and longer-term safety. FINDINGS: Between June 2, and July 2, 2020, 409 children returned to receive a booster vaccine. Each child received the same vaccination for the booster as they received in the primary series of vaccinations; 132 participants received 5 μg R21 adjuvanted with 25 μg Matrix-M, 137 received 5 μg R21 adjuvanted with 50 μg Matrix-M, and 140 received the control vaccine. R21/Matrix-M had a favourable safety profile and was well tolerated. Vaccine efficacy remained high in the high adjuvant dose (50 μg) group, similar to previous findings at 1 year after the primary series of vaccinations. Following the booster vaccination, 67 (51%) of 132 children who received R21/Matrix-M with low-dose adjuvant, 54 (39%) of 137 children who received R21/Matrix-M with high-dose adjuvant, and 121 (86%) of 140 children who received the rabies vaccine developed clinical malaria by 12 months. Vaccine efficacy was 71% (95% CI 60 to 78) in the low-dose adjuvant group and 80% (72 to 85) in the high-dose adjuvant group. In the high-dose adjuvant group, vaccine efficacy against multiple episodes of malaria was 78% (95% CI 71 to 83), and 2285 (95% CI 1911 to 2568) cases of malaria were averted per 1000 child-years at risk among vaccinated children in the second year of follow-up. Among these participants, at 28 days following their last R21/Matrix-M vaccination, titres of malaria-specific anti-NANP antibodies correlated positively with protection against malaria in both the first year of follow-up (Spearman's ρ -0·32 [95% CI -0·45 to -0·19]; p=0·0001) and second year of follow-up (-0·20 [-0·34 to -0·06]; p=0·02). INTERPRETATION: A booster dose of R21/Matrix-M at 1 year following the primary three-dose regimen maintained high efficacy against first and multiple episodes of clinical malaria. Furthermore, the booster vaccine induced antibody concentrations that correlated with vaccine efficacy. The trial is ongoing to assess long-term follow-up of these participants and the value of further booster vaccinations. FUNDING: European and Developing Countries Clinical Trials Partnership 2 (EDCTP2), Wellcome Trust, and NIHR Oxford Biomedical Research Centre. TRANSLATION: For the French translation of the abstract see Supplementary Materials section

    Longitudinal estimation of Plasmodium falciparum prevalence in relation to malaria prevention measures in six sub-Saharan African countries

    Full text link

    Implementation of a malaria rapid diagnostic test in a rural setting of Nanoro, Burkina Faso: from expectation to reality

    No full text
    Abstract Background Malaria rapid diagnostic tests (RDTs) are nowadays widely used in malaria endemic countries as an alternative to microscopy for the diagnosis of malaria. However, quality control of test performance and execution in the field are important in order to ensure proper use and adequate diagnosis of malaria. The current study compared the performance of a histidine-rich protein 2-based RDT used at peripheral health facilities level in real life conditions with that performed at central reference laboratory level with strict adherence to manufacturer instructions. Methods Febrile children attending rural health clinics were tested for malaria with a RDT provided by the Ministry of Health of Burkina Faso as recommended by the National Malaria Control Programme. In addition, a blood sample was collected in an EDTA tube from all study cases for retesting with the same brand of RDT following the manufacturer’s instructions with expert malaria microscopy as gold standard at the central reference laboratory. Fisher exact test was used to compare the proportions by estimating the p-value (p ≤ 0.05) as statistically significant. Results In total, 407 febrile children were included in the study and malaria was diagnosed in 59.9% (244/407) of the cases with expert malaria microscopy. The sensitivity of malaria RDT testing performed at health facilities was 97.5% and comparable to that achieved at the laboratory (98.8%). The number of malaria false negatives was not statistically significant between the two groups (p = 0.5209). However, the malaria RDT testing performed at health facilities had a specificity issue (52.8%) and was much lower compared to RDT testing performed at laboratory (74.2%). The number of malaria false positives was statistically significantly different between the two groups (p = 0.0005). Conclusion Malaria RDT testing performed at the participating rural health facilities resulted in more malaria false positives compared to those performed at central laboratory. Several factors, including storage and transportation conditions but also training of health workers, are most likely to influence test performance. Therefore, it is very important to have appropriate quality control and training programmes in place to ensure correct performance of RDT testing

    Algorithms for sequential interpretation of a malaria rapid diagnostic test detecting two different targets of Plasmodium species to improve diagnostic accuracy in a rural setting (Nanoro, Burkina Faso)

    No full text
    Background Malaria rapid diagnostic tests (RDT) have limitations due to the persistence of histidine-rich protein 2 (HRP2) antigen after treatment and low sensitivity of Plasmodium lactate dehydrogenase (pLDH) based RDTs. To improve the diagnosis of malaria in febrile children, two diagnostic algorithms, based on sequential interpretation of a malaria rapid diagnostic test detecting two different targets of Plasmodium species and followed by expert microscopy, were evaluated. Methods Two diagnostic algorithms were evaluated using 407 blood samples collected between April and October 2016 from febrile children and the diagnostic accuracy of both algorithms was determined. Algorithm 1: The result of line T1-HRP2 were read first; if negative, malaria infection was considered to be absent. If positive, confirmation was done with the line T2-pLDH. If T2-pLDH test was negative, the malaria diagnosis was considered as “inconclusive” and microscopy was performed; Algorithm 2: The result of line T2-pLDH were read first; if positive, malaria infection was considered to be present. If negative, confirmation was done with the line T1-HRP2. If T1-HRP2 was positive the malaria diagnosis was considered as “inconclusive” and microscopy was performed. In absence of malaria microscopy, a malaria infection was ruled out in children with an inconclusive diagnostic test result when previous antimalarial treatment was reported. Results For single interpretation, the sensitivity of PfHRP2 was 98.4% and the specificity was 74.2%, and for the pLDH test the sensitivity was 89.3% and the specificity was 98.8%. Malaria was accurately diagnosed using both algorithms in 84.5% children. The algorithms with the two-line malaria RDT classified the test results into two groups: conclusive and inconclusive results. The diagnostic accuracy for conclusive results was 98.3% using diagnostic algorithm 1 and 98.6% using algorithm 2. The sensitivity and specificity for the conclusive results were 98.2% and 98.4% for algorithm 1, and 98.6% and 98.4% for algorithm 2, respectively. There were 63 (15.5%) children who had an “inconclusive” result for whom expert microscopy was needed. In children with inconclusive results (PfHRP2+/pLDH- only) previous antimalarial treatment was reported in 16 children with malaria negative microscopy (16/40; 40%) and 1 child with malaria positive microscopy (1/23; 4.3%). Conclusion The strategy of sequential interpretation of two-line malaria RDT can improve the diagnosis of malaria. However, some cases will still require confirmative testing with microscopy or additional investigations on previous antimalarial treatment

    Treatable causes of fever among children under five years in a seasonal malaria transmission area in Burkina Faso

    No full text
    Abstract Background Fever remains a major public health problem. In Burkina Faso, more than half of febrile children are considered not to be infected by malaria. This study prospectively assessed probable (treatable) causes of fever in Burkinabe children. Methods A prospective study was conducted among febrile children (≥37.5 °C) under 5 years of age presenting at four health facilities and one referral hospital in rural Burkina Faso. From each participant, blood was collected for malaria microscopy and culture, urine for dipstick testing and culturing if tested positive for leucocytes and nitrite, stool for rotavirus/adenovirus testing, culture and parasitology, and a nasopharyngeal swab for culture. Results In total 684 febrile children were included in the study. Plasmodium falciparum malaria was found in 49.7% (340/684) of the participants and non-malaria infections in 49.1% (336/684) of children. The non-nalaria infections included gastro-intestinal infections (37.0%), common bacterial pathogens of nasopharynx (24.3%), bacterial bloodstream infections (6.0%) and urinary tract infections (1.8%). Nearly 45% (154/340) of the malaria infected children were co-infected with non-nalaria infections, but only 3.2% (11/340) of these co-infections could be considered as a possible alternative cause of fever. In contrast, in the malaria microscopy negative children 18.0% (62/344) of the infections could be the probable cause of the fever. Pathogens were not isolated from 23.7% (162/684) of the febrile cases. Conclusions Malaria remains the most common pathogen found in febrile children in Burkina Faso. However, a relative high number of febrile children had non-malaria infections. The correct diagnosis of these non-malaria fevers is a major concern, and there is an urgent need to develop more point-of-care diagnostic tests and capacities to identify and treat the causes of these fevers

    Can clinical signs or symptoms combined with basic hematology data be used to predict the presence of bacterial infections in febrile children under - 5 years?

    No full text
    Abstract Background Infectious diseases in children living in resource-limited settings are often presumptively managed on the basis of clinical signs and symptoms. Malaria is an exception. However, the interpretation of clinical signs and symptoms in relation to bacterial infections is often challenging, which may lead to an over prescription of antibiotics when a malaria infection is excluded. The present study aims to determine the association between clinical signs and symptoms and basic hematology data, with laboratory confirmed bacterial infections. Methods A health survey was done by study nurses to collect clinical signs/symptoms in febrile (axillary temperature ≥ 37.5 °C) children under - 5 years of age. In addition, blood, stool and urine specimen were systematically collected from each child to perform bacterial culture and full blood cell counts. To determine the association between a bacterial infection with clinical signs/symptoms, and if possible supported by basic hematology data (hemoglobin and leucocyte rates), a univariate analysis was done. This was followed by a multivariate analysis only on those variables with a p-value p  39.5 °C (p = 0.002), diarrhea (p = 0.019) and edema (p = 0.017). There was no association found between bacterial infections and basic haematological findings. If diarrhea and edema were absent, a good negative predictive value (100%) of a bacterial bloodstream infection was found, but the positive predictive value was low (33.3%) and the confidence interval was very large (2.5–100; 7.5–70.1). Conclusion Our study demonstrates that clinical signs and symptoms, combined with basic hematology data only, cannot predict bacterial infections in febrile children under - 5 years of age. The development of practical and easy deployable diagnostic tools to diagnose bacterial infections remains a priority
    corecore