71 research outputs found

    T-cell Imbalance or Decreased Th:Tc Ratio in Immune Thrombocytopenia: Is it Clinically Significant?

    Get PDF
    Background: Immune thrombocytopenic purpura (ITP) is an autoimmune disorder characterized by low platelet count and various contributing factor. The imbalance in T cells may also cause ITP. Therefore, the present study was planned to assess the role of  T-cells in pathogenesis of ITP and also to evaluate any possible link of Th:Tc imbalance to disease severity.Methods: The present study was conducted  with 111 patients of ITP and similar number of controls as case control study with 1:1 ratio of from January 2017 to July 2019. The patients were grouped according to the guideline of ASH as  newly diagnosed/persistent ITP(ND-ITP/P-ITP) and chronic/refractory ITP(C-ITP/R-ITP).The blood samples were obtained, and CBC parameters were observed using advanced hematology analyzer XN-1000.The T cells subset analysis was evaluated by BD FACS Calibur flow cytometer. The Fisher exact test was done to evaluated the difference among the groups with (p=<0.05) by using SPSS version 19.Results: Significantly reduced levels of hemoglobin, platelet counts with elevated IPF were observed in ND-ITP/P-ITP and C-ITP/R-ITP patients (p=<0.001).The significantly low Th:Tc ratio (p=<0.001) predicts imbalance of T cells in ND-ITP/P-ITP (0.86±0.47) as compared to control group (1.73±0.46).The mean of 0.84±0.34 Th:Tc ratio was observed in C-ITP/R-ITP children with ≤16 years. An insignificant difference (p= 0.89) was linked between children with non-severe chronic (0.84±0.42), severe chronic (0.82±0.49) and refractory ITP (0.85±0.51).Conclusion: In ITP patients’ low levels of Th:Tc ratio was observed suggesting dysregulation of immune system. The chronicity of the disease may be linked to elevated production of Tc in children (≤16 years) with C-ITP/R-ITP.Keywords: Immune thrombocytopenia; Platelets counts; Helper T-cells (Th); Cytotoxic T-cells (Tc) 

    New approach to use of kenaf for paper and paperboard production.

    Get PDF
    This study sought to determine the suitability of fractionation and consequence-selective processing (separation of long fiber and short fiber, beating long fiber, and remixing with short fiber to target freeness) as a new approach to use of kenaf whole stem pulp for paper and paper-board production. A laboratory Bauer-McNett Classifier with screen 18 mesh was used to separate short fibers and long fibers of the unbeaten kenaf whole stem soda-anthraquinone high kappa and low kappa pulps. For comparison, the initial unbeaten pulps were beaten in the PFI mill to the same freeness (300 mL CSF). Results of our patented method showed that the fractionation process was able to provide a good opportunity to beat the long fiber portion at higher PFI revolutions and to achieve better fibrillation, significantly improving all paper properties of kenaf pulps except for tear index and producing sheets with better drainage and strength properties compared to conventionally beaten pulps, especially in the case of kenaf high kappa pulp

    Soda-Anthraquinone pulp from Malaysian cultivated Kenaf for linerboard production

    Get PDF
    The goal of this study was to prepare soda- anthraquinone pulp from kenaf whole stem and to compare the resultant core and bast pulps for linerboard production. Pulping was done under mild cooking conditions (active alkali 12-15%) with a cooking time of 30-90 min and a temperature of 160ºC. During the pulping process, kappa numbers ranged from 56.0 to 20.6, while total yields varied from 58.4 to 54.2% with a rejection rate of 2.3 to 0.1%. Based on the quality of pulp produced, kappa numbers 49.4 and 25.4 was selected as symbolic of high and low pulps respectively. The results of the study revealed significant difference between the properties of core, whole stem (KHK and KLK), and bast pulps. Core pulps with low freeness and high drainage time the study found produced sheets with greater density, tensile index, burst index and RCT, with lower light scattering coefficient and tear index than bast pulp. Whole stem pulps showed properties between those of core and bast pulps. Moreover, KLK with high drainage time produced papers with significantly higher strength properties than KHK

    A review of literatures related of using kenaf for pulp production (beating, fractionation, and recycled fiber)

    Get PDF
    This paper reviews several empirical studies which highlight the using of kenaf for pulp production (beating, fractionation, and recycled fiber). Kenaf is a non-wood pulp source that is alreadly used in parts of the world. Review studies showed that being a dicotyledonous plant, kenaf stem consists of bast and core fibers that are significantly different in chemical and morphological properties. Fiber properties directly influence pulping conditions applied in pulp and papermaking production. Kenaf fibers due to different nature and structure exhibit different behavior during pulping and papermaking. Core pulp due to presence of components with a high surface area coming from pith has low freeness and enhance susceptibility to refining action and pulp rapidly attains freeness value that are quite prohibitive for practical purposes. These short comings restrict the use of core pulp, which probably better used as unrefined. On the contrary, bast pulp refines easily and develops its strength. Due to difference in the quality of bast and core fiber, some researchers have proposed to fiber separation and pulping of each fraction separately and using each pulp lonely or blending refined bast pulp and unrefined core based on final product properties. These review results showed that, there is promised to use of kenaf as whole stem (bast and core together) for technical and economical advantages

    Soda-Anthraquinone pulp from Malaysian cultivated Kenaf for linerboard production

    Get PDF
    The goal of this study was to prepare soda- anthraquinone pulp from kenaf whole stem and to compare the resultant core and bast pulps for linerboard production. Pulping was done under mild cooking conditions (active alkali 12-15%) with a cooking time of 30-90 min and a temperature of 160ºC. During the pulping process, kappa numbers ranged from 56.0 to 20.6, while total yields varied from 58.4 to 54.2% with a rejection rate of 2.3 to 0.1%. Based on the quality of pulp produced, kappa numbers 49.4 and 25.4 was selected as symbolic of high and low pulps respectively. The results of the study revealed significant difference between the properties of core, whole stem (KHK and KLK), and bast pulps. Core pulps with low freeness and high drainage time the study found produced sheets with greater density, tensile index, burst index and RCT, with lower light scattering coefficient and tear index than bast pulp. Whole stem pulps showed properties between those of core and bast pulps. Moreover, KLK with high drainage time produced papers with significantly higher strength properties than KHK

    Evaluation linerboard properties from Malaysian cultivated kenaf soda-anthraquinone pulp versus commercial pulps.

    Get PDF
    Malaysian cultivated kenaf has been identified as a suitable raw material for linerboard production. This study examines the soda-antraquinone (soda-AQ) pulp of kenaf fibers versus old corrugated container (OCC) and unbleached softwood kraft pulps as the main sources for linerboard production. The results showed significant differences among the pulp properties. The unbleached kraft pulp with very high freeness required high beating to reach an optimized freeness and produced paper with the highest strength properties, except for tear resistance. The OCC gave paper with the lowest strength properties. In the case of kenaf fractions, bast pulp with high freeness needed less beating than softwood and produced paper with high tear resistance. Core fiber, which had the lowest freeness and highest drainage time, led to paper with high strength but very low tear resistance. Kenaf whole stem pulp showed intermediate properties between core and bast and close to those of unbleached softwood pulp, but with very lower beating requirement. Finally, kenaf whole stem, due to its strength properties, moderate separation cost, and simple pulping process, was judged to be more suitable for commercialization for linerboard production in Malaysia

    EVALUATION OF LINERBOARD PROPERTIES FROM MALAYSIAN CULTIVATED KENAF SODA-ANTHRAQUINONE PULPS VERSUS COMMERCIAL PULPS

    Get PDF
    Malaysian cultivated kenaf has been identified as a suitable raw material for linerboard production. This study examines the soda-antraquinone (soda-AQ) pulp of kenaf fibers versus old corrugated container (OCC) and unbleached softwood kraft pulps as the main sources for linerboard production. The results showed significant differences among the pulp properties. The unbleached kraft pulp with very high freeness required high beating to reach an optimized freeness and produced paper with the highest strength properties, except for tear resistance. The OCC gave paper with the lowest strength properties. In the case of kenaf fractions, bast pulp with high freeness needed less beating than softwood and produced paper with high tear resistance. Core fiber, which had the lowest freeness and highest drainage time, led to paper with high strength but very low tear resistance. Kenaf whole stem pulp showed intermediate properties between core and bast and close to those of unbleached softwood pulp, but with very lower beating requirement. Finally, kenaf whole stem, due to its strength properties, moderate separation cost, and simple pulping process, was judged to be more suitable for commercialization for linerboard production in Malaysia

    A Novel Nonsense Mutation in FERMT3 Causes LAD-III in a Pakistani Family

    Get PDF
    Leukocyte adhesion deficiency-III (LAD3) is an extremely rare primary immunodeficiency disorder, transmitted with autosomal-recessive inheritance. It is caused by genetic alteration in the FERMT3 gene, which leads to abnormal expression of kindlin-3. This cytoplasmic protein is highly expressed in leukocytes and platelets, and acts as an important regulator of integrin activation. LAD3 has features like bleeding syndrome of Glanzmann-type and leukocyte adhesion deficiency. FERMT3 mutation(s) have not been well characterized in Pakistani patients with LAD3. In this study, an infant and his family of Pakistani origin, presenting with clinical features of LAD, were investigated to determine the underlying genetic defect. Targeted next generation sequencing (TGS) and Sanger sequencing were performed to identify and confirm the causative mutations, respectively, and their segregation within the family. A novel, homozygous FERMT3 nonsense mutation (c.286C &gt; T, p.Q96∗) was found in the proband, and its co-segregation with LAD3 phenotype within the family was consistent with an autosomal recessive inheritance. Both parents were carriers of the same mutation. This family was offered prenatal diagnosis during first trimester of the subsequent pregnancy; the fetus carried the variant. In conclusion, our study is the first report to identify the novel homozygous variant c.286C &gt; T, p.Q96∗in the FERMT3 gene, which might be the causative mutation for LAD3 patients of Pakistani origin
    corecore