3,035 research outputs found

    Quantum transport of Dirac electrons in graphene in the presence of a spatially modulated magnetic field

    Full text link
    We have investigated the electrical transport properties of Dirac electrons in a monolayer graphene sheet in the presence of a perpendicular magnetic field that is modulated weakly and periodically along one direction.We find that the Landau levels broaden into bands and their width oscillates as a function of the band index and the magnetic field.We determine the Οƒyy\sigma_{yy} component of the magnetoconductivity tensor for this system which is shown to exhibit Weiss oscillations.We also determine analytically the asymptotic expressions for Οƒyy\sigma_{yy}.We compare these results with recently obtained results for electrically modulated graphene as well as those for magnetically modulated conventional two-dimensional electron gas (2DEG) system.We find that in the magnetically modulated graphene system cosidered in this work,Weiss oscillations in Οƒyy\sigma_{yy} have a reduced amplitude compared to the 2DEG but are less damped by temperature while they have a higher amplitude than in the electrically modulated graphene system. We also find that these oscillations are out of phase by Ο€\pi with those of the electrically modulated system while they are in phase with those in the 2DEG system.Comment: Accepted in PRB: 10 pages, 3 figure

    Weiss oscillations in the electronic structure of modulated graphene

    Full text link
    We present a theoretical study of the electronic structure of modulated graphene in the presence of a perpendicular magnetic field. The density of states and the bandwidth for the Dirac electrons in this system are determined. The appearance of unusual Weiss oscillations in the bandwidth and density of states is the main focus of this work.Comment: 8 pages, 2 figures, accepted in J. Phys.: Conden. mat
    • …
    corecore