research

Quantum transport of Dirac electrons in graphene in the presence of a spatially modulated magnetic field

Abstract

We have investigated the electrical transport properties of Dirac electrons in a monolayer graphene sheet in the presence of a perpendicular magnetic field that is modulated weakly and periodically along one direction.We find that the Landau levels broaden into bands and their width oscillates as a function of the band index and the magnetic field.We determine the σyy\sigma_{yy} component of the magnetoconductivity tensor for this system which is shown to exhibit Weiss oscillations.We also determine analytically the asymptotic expressions for σyy\sigma_{yy}.We compare these results with recently obtained results for electrically modulated graphene as well as those for magnetically modulated conventional two-dimensional electron gas (2DEG) system.We find that in the magnetically modulated graphene system cosidered in this work,Weiss oscillations in σyy\sigma_{yy} have a reduced amplitude compared to the 2DEG but are less damped by temperature while they have a higher amplitude than in the electrically modulated graphene system. We also find that these oscillations are out of phase by π\pi with those of the electrically modulated system while they are in phase with those in the 2DEG system.Comment: Accepted in PRB: 10 pages, 3 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020