9 research outputs found

    A slippery slope: On the origin, role and physiology of mucus

    Get PDF
    The mucosa of the gastrointestinal tract, eyes, nose, lungs, cervix and vagina is lined by epithelium interspersed with mucus-secreting goblet cells, all of which contribute to their unique functions. This mucus provides an integral defence to the epithelium against noxious agents and pathogens. However, it can equally act as a barrier to drugs and delivery systems targeting epithelial passive and active transport mechanisms. This review highlights the various mucins expressed at different mucosal surfaces on the human body, and their role in creating a mucoid architecture to protect epithelia with specialized functions. Various factors compromising the barrier properties of mucus have been discussed, with an emphasis on how disease states and microbiota can alter the physical properties of mucus. For instance, Akkermansia muciniphila, a bacterium found in higher levels in the gut of lean individuals induces the production of a thickened gut mucus layer. The aims of this article are to elucidate the different physiological, biochemical and physical properties of bodily mucus, a keen appreciation of which will help circumvent the slippery slope of challenges faced in achieving effective mucosal drug and gene delivery

    Impact of Peptide Structure on Colonic Stability and Tissue Permeability

    Get PDF
    Most marketed peptide drugs are administered parenterally due to their inherent gastrointestinal (GI) instability and poor permeability across the GI epithelium. Several molecular design techniques, such as cyclisation and D-amino acid (D-AA) substitution, have been proposed to improve oral peptide drug bioavailability. However, very few of these techniques have been translated to the clinic. In addition, little is known about how synthetic peptide design may improve stability and permeability in the colon, a key site for the treatment of inflammatory bowel disease and colorectal cancer. In this study, we investigated the impact of various cyclisation modifications and D-AA substitutions on the enzymatic stability and colonic tissue permeability of native oxytocin and 11 oxytocin-based peptides. Results showed that the disulfide bond cyclisation present in native oxytocin provided an improved stability in a human colon model compared to a linear oxytocin derivative. Chloroacetyl cyclisation increased native oxytocin stability in the colonic model at 1.5 h by 30.0%, whereas thioether and N-terminal acetylated cyclisations offered no additional protection at 1.5 h. The site and number of D-AA substitutions were found to be critical for stability, with three D-AAs at Tyr, Ile and Leu, improving native oxytocin stability at 1.5 h in both linear and cyclic structures by 58.2% and 79.1%, respectively. Substitution of three D-AAs into native cyclic oxytocin significantly increased peptide permeability across rat colonic tissue; this may be because D-AA substitution favourably altered the peptide’s secondary structure. This study is the first to show how the strategic design of peptide therapeutics could enable their delivery to the colon via the oral route

    Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of MSUD: first single-centre, prospective, crossover study in patients

    No full text
    Maple syrup urine disease (MSUD) is a rare metabolic disorder with a worldwide prevalence of 1 in every 185,000 live births. However, certain populations display a significant overexpression of the disorder where incidence is reported to be 1 in every 52, 541 new-borns. The first-line therapy for MSUD involves a strict dietary leucine restriction and oral supplementation of isoleucine and valine. The dose administered to patients requires strict tailoring according to age, weight and blood levels. In current clinical practice, however, practitioners still have to prepare extemporaneous formulations due to the lack of suitable oral treatments for MSUD. Herein we evaluate for the first time the use of 3D printing in a hospital setting for the preparation of personalised therapies with the aim of improving safety and acceptability to isoleucine supplementation in paediatric patients suffering from MSUD. The study was a single-centre, prospective crossover experimental study. Four paediatric patients with MSUD (aged 3-16 years) were treated at the Clinic University Hospital in Santiago de Compostela, Spain which is a MSUD reference hospital in Europe. The primary investigation was to evaluate isoleucine blood levels after six months treatment with two types of formulations; conventional capsule prepared by manual compounding and personalised chewable formulations prepared by automated 3D printing. A secondary investigation was to evaluate patient acceptability of 3D printed formulations prepared with different flavours and colours. Isoleucine blood levels in the patients were well controlled using both types of formulations, however, the 3D printed therapy showed mean levels closer to the target value and with less variability (200 - 400µM). The 3D printed formulations were well accepted by the patients regarding flavour and colour. The study demonstrates for the first time that 3D printing offers a feasible, rapid and automated approach to prepare oral tailored-dose therapies in a hospital setting. 3D printing has shown to be an effective manufacturing technology in producing chewable isoleucine printlets as a treatment of MSUD with good acceptability
    corecore