351 research outputs found

    Occurrence of nitric oxide synthase in Megoura viciae Buckton (Homoptera, Aphididae): an histochemical and immunohistochemical localisation

    Get PDF
    Nitric oxide (NO) is known to be involved in many physiological reactions of insects. We analysed NOS localisation in aphids of the species Megoura viciae by means of histochemical reaction for the NADPH-diaphorase activity and immunohistochemical methods for uNOS, nNOS and iNOS. The obtained data provided a complex and peculiar pattern of NOS distribution in cells and tissue of M. viciae.The histochemical reaction for NADPH-diaphorase was an indicative, but not exact marker of NOS localisation in aphids. The use of anti uNOS antiserum (frequently applied in insects) was of limited value in our specimens, whereas more satisfactory results were obtained with anti nNOS and iNOS antisera of human origin. The results of Western blot analysis confirmed the immunohistochemical ones, showing an aphid protein that reacted strongly with the polyclonal antibody anti-iNOS and anti-nNOS while a similar protein band was weakly immunoreactive with the polyclonal antibody anti-uNOS. Our results suggest that NO, prevalently synthesised by calcium/calmodulin-dependent isoform, plays important physiological roles both in adult and embryological stages of aphids. The data of principal interest was NOS presence in bacteriocytes, cells that host symbiotic prokaryotes belonging to the species Buchnera aphidicola, and in nuclei of adipocytes and gut cells

    Mediterranean diet vegetable foods protect meat lipids from oxidation during in vitro gastro-intestinal digestion

    Get PDF
    Meat lipids oxidation during digestion gives rise to a post-prandial oxidative stress condition, which negatively affects human health. Mediterranean Diet vegetables contain high amount of phenolic compounds, which potentially may reduce the oxidative phenomena during digestion. In vitro co-digestion of turkey meat with a typical Mediterranean Diet salad containing tomato, onion, black olives, extra-virgin olive oil (EVOO) and basil, dose-dependently reduced lipid peroxidation. Onion and EVOO were more effective in limiting oxidation than the other foods, resulting in negligible concentrations of lipid hydroperoxides after digestion. Specific phenolic classes dominated the phenolic profile of the different foods, such as flavonols and anthocyanins in onion, phenolic acids in tomato and basil, and tyrosol-derivatives in black olives and EVOO. The correlation between lipid peroxidation inhibition, phenolic constituents and antioxidant properties was evaluated by principal component analysis (PCA). Flavonols and anthocyanin were the major contributors to the bioactive response of vegetable foods

    Effect of Fermentation with Streptococcus thermophilus Strains on In Vitro Gastro-Intestinal Digestion of Whey Protein Concentrates

    Get PDF
    Three Streptococcus thermophilus strains, namely RBC6, RBC20, and RBN16, were proven to release bioactive peptides during whey protein concentrate (WPC) fermentation, resulting in WPC hydrolysates with biological activities. However, these bioactive peptides can break down during gastro-intestinal digestion (GID), hindering the health-promoting effect of fermented WPC hydrolysates in vivo. In this work, the effect of simulated GID on three WPC hydrolysates fermented with S. thermophilus strains, as well as on unfermented WPC was studied in terms of protein hydrolysis, biological activities, and peptidomics profiles, respectively. In general, WPC fermentation enhanced protein hydrolysis compared to unfermented WPC. After in vitro GID, WPC fermented with S. thermophilus RBC20 showed the highest antioxidant activity, whereas WPC fermented with strain RBC06 displayed the highest angiotensin-converting enzyme (ACE)- and dipeptidyl peptidase IV (DPP-IV)-inhibitory activities. Peptidomics analysis revealed that all digested WPC samples were highly similar to each other in peptide profiles, and 85% of the 46 identified bioactive peptides were shared among fermented and unfermented samples. However, semi-quantitative analysis linked the observed differences in biological activities among the samples to differences in the amount of bioactive peptides. The anti-hypertensive peptides VPP and IPP, as well as the DPP-IV-inhibitory peptide APFPE, were quantified. In conclusion, WPC fermentation with S. thermophilus positively impacted protein hydrolysis and bioactive peptide release during GID

    Application of a Combined Peptidomics and In Silico Approach for the Identification of Novel Dipeptidyl Peptidase-IV-Inhibitory Peptides in In Vitro Digested Pinto Bean Protein Extract

    Get PDF
    The conventional approach in bioactive peptides discovery, which includes extensive bioassay-guided fractionation and purification processes, is tedious, time-consuming and not always successful. The recently developed bioinformatics-driven in silico approach is rapid and cost-effective; however, it lacks an actual physiological significance. In this study a new integrated peptidomics and in silico method, which combines the advantages of the conventional and in silico approaches by using the pool of peptides identified in a food hydrolysate as the starting point for subsequent application of selected bioinformatics tools, has been developed. Pinto bean protein extract was in vitro digested and peptides were identified by peptidomics. The pool of obtained peptides was screened by in silico analysis and structure–activity relationship modelling. Three peptides (SIPR, SAPI and FVPH) were selected as potential inhibitors of the dipeptidyl-peptidase-IV (DPP-IV) enzyme by this integrated approach. In vitro bioactivity assay showed that all three peptides were able to inhibit DPP-IV with the tetra-peptide SAPI showing the highest activity (IC50 = 57.7 µmol/L). Indeed, a new possible characteristic of peptides (i.e., the presence of an S residue at the N-terminus) able to inhibit DPP-IV was proposed

    Cooking and In Vitro Digestion Modulate the Anti-Diabetic Properties of Red-Skinned Onion and Dark Purple Eggplant Phenolic Compounds

    Get PDF
    The intake of phenolic-rich foods is an emerging preventive approach for the management of type 2 diabetes, thanks to the ability of these compounds to inhibit some key metabolic enzymes. In this study, the influence of cooking and in vitro digestion on the α-glucosidase, α-amylase, and dipeptidyl-peptidase IV (DPP-IV) inhibitory activity of red-skinned onion (RSO) and dark purple eggplant (DPE) phenolic fractions was assessed. The applied cooking procedures had different influences on the total and individual phenolic compounds gastrointestinal bioaccessibility. DPE in vitro digested phenolic fractions displayed no inhibitory activity versus α-amylase and DPP-IV, whereas the fried DPE sample exhibited moderate inhibitory activity against α-glucosidase. This sample mainly contained hydroxycinnamic acid amides that can be responsible for the observed effect. Contrariwise, raw and cooked in vitro digested RSO phenolic fractions inhibited all three enzymes but with different effectiveness. Fried and raw RSO samples were the most active against them. Statistical analysis pointed out that quercetin mono-hexosides (mainly quercetin-4′-O-hexoside) were responsible for the inhibition of α-glucosidase, whereas quercetin dihexosides (mainly quercetin-3-O-hexoside-4′-O-hexoside) were responsible for the DPP-IV-inhibitory activity of RSO samples. An accurate design of the cooking methods could be essential to maximize the release of individual phenolic compounds and the related bioactivities

    Antioxidant and Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides Obtained from Alcalase Protein Hydrolysate Fractions of Hemp (Cannabis sativa L.) Bran

    Get PDF
    Proteins from hemp bran (HPB), a byproduct of the hemp seed food-processing chain, were chemically extracted, hydrolyzed by Alcalase, and separated by membrane ultrafiltration into four fractions (MW <1, 1-3, 3-5, and >5 kDa). The antioxidant and antihypertensive properties of the initial extract and the fractions were evaluated by in vitro assays for their ability to scavenge radical species, bind with metal ions, reduce ferric ions, and inhibit angiotensin-converting enzyme (ACE) activity. Bioactive peptides were identified by high-resolution mass spectrometry and sequence comparison with BIOPEP and BioPep DB databases. The hydrolysate was strongly antioxidant and ACE-inhibiting; the most bioactive peptides were further concentrated by ultrafiltration. Of the 239 peptides identified, 47 (12 antioxidant and 35 ACE-inhibitory) exhibited structural features correlated with the specific bioactivity. These results highlight the promise of hydrolysate and size-based HPB fractions as natural functional ingredients for the food or pharmaceutical industry

    An integrated peptidomics and in silico approach to identify novel anti-diabetic peptides in parmigiano-reggiano cheese

    Get PDF
    Inhibition of key metabolic enzymes linked to type-2-diabetes (T2D) by food-derived compounds is a preventive emerging strategy in the management of T2D. Here, the impact of Parmigiano- Reggiano (PR) cheese peptide fractions, at four different ripening times (12, 18, 24, and 30 months), on the enzymatic activity of α-glucosidase, α-amylase, and dipeptidyl peptidase-IV (DPPIV) as well as on the formation of fluorescent advanced glycation end-products (fAGEs) was assessed. The PR peptide fractions were able to inhibit the selected enzymes and fAGEs formation. The 12-month-ripening PR sample was the most active against the three enzymes and fAGEs. Mass spectrometry analysis enabled the identification of 415 unique peptides, 54.9% of them common to the four PR samples. Forty-nine previously identified bioactive peptides were found, mostly characterized as angiotensin-converting enzyme-inhibitors. The application of an integrated approach that combined peptidomics, in silico analysis, and a structure–activity relationship led to an efficient selection of 6 peptides with potential DPP-IV and α-glucosidase inhibitory activities. Peptide APFPE was identified as a potent novel DPP-IV inhibitor (IC50 = 49.5 ± 0.5 μmol/L). In addition, the well-known anti-hypertensive tripeptide, IPP, was the only one able to inhibit the three digestive enzymes, highlighting its possible new and pivotal role in diabetes management

    Peptide profiling and biological activities of 12- month ripened parmigiano reggiano cheese

    Get PDF
    Proteolysis degree, biological activities, and water-soluble peptide patterns were evaluated in 12 month-ripened Parmigiano Reggiano (PR) cheeses collected in different dairy farms and showing different salt and fat content. Samples classified in high-salt and high-fat group (HH) generally showed lower proteolysis degree than samples having low-salt and low-fat content (LL). This positive correlation between salt/fat reduction and proteolysis was also confirmed by the analysis of biological activities, as the LL group showed higher average values of angiotensin-converting enzyme (ACE)-inhibitory and antioxidant activities. UHPLC/HR-MS allowed the identification of 805 unique peptides: LL and HH groups shared 59.3% of these peptides, while 20.9% and 19.9% were LL and HH specific, respectively. Frequency analysis of peptides identified a core of 183 peptides typical of 12-month ripened PR cheeses (corresponding to the 22.7% of total peptides), but no significant differences were detected in peptide patterns between LL and HH groups. Forty bioactive peptides, including 18 ACE-inhibitors and 12 anti-microbial peptides, were identified, of which 25 firstly found in PR cheese. Globally, this work contributed to unraveling the potentially healthy benefits of peptides fraction in PR cheese and provided prior evidence that PR with reduced at/salt content showed the highest antihypertensive and antioxidant activities

    Characterization of yeasts isolated from parmigiano reggiano cheese natural whey starter: From spoilage agents to potential cell factories for whey valorization

    Get PDF
    Whey is the main byproduct of the dairy industry and contains sugars (lactose) and proteins (especially serum proteins and, at lesser extent, residual caseins), which can be valorized by the fermentative action of yeasts. In the present study, we characterized the spoilage yeast population inhabiting natural whey starter (NWS), the undefined starter culture of thermophilic lactic acid bacteria used in Parmigiano Reggiano (PR) cheesemaking, and evaluated thermotolerance, mating type, and the aptitude to produce ethanol and bioactive peptides from whey lactose and proteins, respectively, in a selected pool of strains. PCR-RFLP assay of ribosomal ITS regions and phylogenetic analysis of 26S rDNA D1/D2 domains showed that PR NWS yeast population consists of the well-documented Kluyveromyces marxianus, as well as of other species (Saccharomyces cerevisiae, Wickerhamiella pararugosa, and Torulaspora delbrueckii), with multiple biotypes scored within each species as demonstrated by (GTG)5-based MSP-PCR. Haploid and diploid K. marxianus strains were identified through MAT genotyping, while thermotolerance assay allowed the selection of strains suitable to grow up to 48â—¦C. In whey fermentation trials, one thermotolerant strain was suitable to release ethanol with a fermentation efficiency of 86.5%, while another candidate was able to produce the highest amounts of both ethanol and bioactive peptides with potentially anti-hypertensive function. The present work demonstrated that PR NWS is a reservoir of ethanol and bioactive peptides producer yeasts, which can be exploited to valorize whey, in agreement with the principles of circularity and sustainability
    • …
    corecore