
biology

Article

Peptide Profiling and Biological Activities of
12-Month Ripened Parmigiano Reggiano Cheese

Lisa Solieri 1 , Andrea Baldaccini 1, Serena Martini 1 , Aldo Bianchi 2, Valentina Pizzamiglio 2

and Davide Tagliazucchi 1,*
1 Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2-Pad. Besta,

42100 Reggio Emilia, Italy; lisa.solieri@unimore.it (L.S.); andreabalda94@gmail.com (A.B.);
serena.martini@unimore.it (S.M.)

2 Consorzio del Formaggio Parmigiano Reggiano, via J.F. Kennedy 1 8, 42124 Reggio Emilia, Italy;
bianchi@parmigianoreggiano.it (A.B.); pizzamiglio@parmigianoreggiano.it (V.P.)

* Correspondence: davide.tagliazucchi@unimore.it; Tel.: +39-05-2252-2060

Received: 8 June 2020; Accepted: 15 July 2020; Published: 16 July 2020
����������
�������

Abstract: Proteolysis degree, biological activities, and water-soluble peptide patterns were evaluated
in 12 month-ripened Parmigiano Reggiano (PR) cheeses collected in different dairy farms and
showing different salt and fat content. Samples classified in high-salt and high-fat group (HH)
generally showed lower proteolysis degree than samples having low-salt and low-fat content (LL).
This positive correlation between salt/fat reduction and proteolysis was also confirmed by the analysis
of biological activities, as the LL group showed higher average values of angiotensin-converting
enzyme (ACE)-inhibitory and antioxidant activities. UHPLC/HR-MS allowed the identification of
805 unique peptides: LL and HH groups shared 59.3% of these peptides, while 20.9% and 19.9% were
LL and HH specific, respectively. Frequency analysis of peptides identified a core of 183 peptides
typical of 12-month ripened PR cheeses (corresponding to the 22.7% of total peptides), but no
significant differences were detected in peptide patterns between LL and HH groups. Forty bioactive
peptides, including 18 ACE-inhibitors and 12 anti-microbial peptides, were identified, of which
25 firstly found in PR cheese. Globally, this work contributed to unraveling the potentially healthy
benefits of peptides fraction in PR cheese and provided prior evidence that PR with reduced fat/salt
content showed the highest antihypertensive and antioxidant activities.
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1. Introduction

Several recent review papers have suggested that the intake of dairy foods may be relevant to
human health. Total dairy intake is related to a decreased risk of cardiovascular pathologies as well as
stroke, hypertension, and colorectal cancer [1]. Furthermore, prospective cohort studies have pointed
out a modest association between lower risk of type 2 diabetes and the intake of dairy foods, which is
stronger for yogurt [2].

Among dairy products, fermented dairy foods, such as cheese, fermented milk, and yogurt,
are getting popularity worldwide for their supposed health-promoting effects [3]. In particular,
cheese is not only a plentiful source of fundamental nutrients, such as minerals, vitamins, fats, and
proteins, but also of bioactive compounds, mainly fatty acids, calcium, and bioactive peptides, with
supposed positive effects on human health [4]. During cheese manufacturing and ripening, milk
caseins are hydrolyzed into a broad range of peptides by chymosin, endogenous plasmin, and somatic
cells proteolytic enzymes, as well as by starter (S-LAB) and nonstarter (NS-LAB) lactic acid bacteria
cell-envelope proteases (CEPs) and peptidases [5,6]. Some of the released peptides, identified in
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several kinds of cheese, have a proven in vivo or in vitro biological activity, especially anti-microbial,
antioxidant, antihypertensive, and ACE-inhibitory activities [3,7,8].

PR is a hard cheese with protected designation of origin (PDO), made by a combination of
partially skimmed and whole raw milk added with natural whey starter, principally made up by
thermophilic S-LAB [9]. After cooking and brine salting, PR is subjected to at least 12 months of
ripening, during which NS-LAB progressively replaces the S-LAB population [10]. The production and
maturation procedures of the PR cheese, according to the PDO, are detailed in Tagliazucchi et al. [11].
Reduction of salt and fat intake is a major topic of public health relevance. It is a fundamental nutritional
recommendation for reducing the onset of cardiovascular diseases and related pathologies [12,13].
Considering the overall increasing trend in cheese consumption worldwide, the reduction of salt and
fat concentrations has become an essential task for public health as well as for the dairy sector [14].
However, lowering fat and/or salt content in cheese may have several negative effects, including altered
composition and reduced extent of glycolysis, proteolysis, and lipolysis, with an overall decrease
in quality, sensorial attributes, and texture of the final products [15–17]. In particular, reduction
of fat and salt in cheese increases pH, water activity, and moisture content, as well as decreases
salt/moisture (S/M) ratio, which, in turn, leads to the development of bitter taste [18] and to negative
alterations of cheese fracture force and firmness [19]. Low S/M levels negatively affect the autolysis
of cell permeabilization, reducing the release of microbial aminopeptidases and lipases, mainly
responsible for proteolysis and lipolysis [20,21]. Low-fat content further contributes to reducing the
free fatty acids, which are precursors of important flavorful molecules, such as ketones, lactones,
alcohols, esters, and aldehydes [18]. Fat and salt content also modulates the growth of S-LAB and
NS-LAB in cheeses. For example, in Cheddar cheese, the populations of NS-LAB decreases with fat
content, whereas the S-LAB population is not affected [22]. PR cheese exhibits a strong variability
in salt and fat content, mainly related to practical operations associated with specific cheese-making
technologies. This compositional variability modulates the NS-LAB population in PR after 12 months
of ripening. Lactobacillus rhamnosus is prevalent in PR samples with high-fat and high-salt content,
whereas Lactobacillus paracasei is most frequent in PR samples with low-fat and low-salt content [11].
Therefore, salt content has a thorough effect on cheese ripening by tuning the bacterial population
and thus their proteolytic activity, thereby possibly influencing casein hydrolysis and the subsequent
release of peptides and amino acids [22,23]. In this context, the reduction of fat and salt content might
modulate the peptidomic profile and, consequently, the bioactive characters of cheeses. Despite the
importance of this topic, no studies have investigated the effect of salt and fat content on the release of
the peptides during PR cheese ripening.

In our previous work, 24 Parmigiano Reggiano (PR) samples at 12 months of ripening were
clustered in two subgroups, namely, LL (samples with low-fat and low-salt content) and HH (samples
with high-fat and high-salt content), depending upon their fat and salt content and microbiologically
investigated [11]. The present study was designed to compare the peptidome of these two sets of
12-month ripened PR cheese and determined how compositional differences in fat and salt content
affected peptide fraction and the associated potential biological activities (angiotensin-converting
enzyme inhibitory, dipeptidyl-peptidase IV inhibitory, and antioxidant activities).

2. Materials and Methods

2.1. Materials

Enzymes, substrates, and reagents for the degree determination of the analysis and hydrolysis of
biological activities were supplied by Sigma-Aldrich (Milan, Italy). Mass spectrometry solvents were
from Bio-Rad (Hercules, CA, U.S.A.). Amicon Ultra-4 regenerated cellulose filters with a molecular
weight cut-off of 3 kDa were purchased from Millipore (Milan, Italy). VPP and IPP (95% purity) were
synthesized by Bio-Fab research (Rome, Italy). All the other reagents were from Carlo Erba (Milan,
Italy). Parmigiano Reggiano cheese samples were kindly provided by the Consorzio del Formaggio
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Parmigiano Reggiano (Reggio Emilia, Italy). Cheese wheels produced 12 different dairy farms located
in Italy in the provinces of Reggio Emilia (44◦42′34′′56 N; 10◦37′13′′80 E), Modena (44◦39′24′′48 N;
10◦55′12′′72 E), and Parma (44◦48′05.3′′ N; 10◦19′40.8′′ E) from August to September 2017. Two slices
of 0.5 kg (height 10.5–11.5 cm, radius 20–24 cm) were collected for each cheese wheel in September
2018 and immediately grated and stored at 4 ◦C under vacuum for the subsequent biological activities’
analysis and peptide profiling.

2.2. Extraction of Water-Soluble Peptides from 12-Month Ripened Parmigiano Reggiano (PR) Samples and
Determination of the Peptides Concentration

The extraction of water-soluble peptides from PR was carried out, as reported in Sforza et al. [6],
with few modifications. Briefly, 5 g of grated PR samples were combined with 45 mL of 0.1 mol/L
HCl and then homogenized with an Ultra-Turrax homogenizer (3 cycles of 1 min). The obtained
homogenates were centrifuged for 40 min at 4000× g (4 ◦C). After centrifugation, the supernatants
were withdrawn, and the pH brought to 7.0, with NaOH 1 mol/L, to precipitate not hydrolyzed caseins.
The peptide fractions were obtained after centrifugation at 10,000× g for 20 min at 4 ◦C. The extractions
were performed in triplicate for each PR sample. The TNBS (2,4,6-trinitrobenzenesulfonic acid) assay
was applied to quantify the total amount of peptides [24]. The results were expressed as mg of leucine
equivalent/g of cheese.

2.3. Biological Activities Analysis

2.3.1. Antioxidant Activity

The ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) was used to determine the
antioxidant activity of the peptide fractions, as described in Re et al. [25]. The ABTS scavenging
capacity was expressed as µmol of trolox equivalent/g of cheese.

2.3.2. Angiotensin-Converting Enzyme Inhibitory Activity

Angiotensin-converting enzyme inhibitory activity was measured according to Rutella,
Tagliazucchi, and Solieri [26]. Briefly, 350 µL of the tripeptide N-[3-(2-furyl)acryloyl]-L-phenylalanyl-
glycyl-glycine (FAPGG) (1.6 mmol/L) dissolved in 100 mmol/L Tris-HCl, buffer containing NaCl
0.6 mol/L (pH 8.2), was mixed with 280 µL of the Tris-HCl buffer and 50 µL of the sample (50 µL of
reaction buffer in the control assay). After 3 min of incubation at 37 ◦C, 20 µL of the ACE solution was
added (final ACE activity in the assay of 50 mU/mL). The reaction was followed at 345 nm for 10 min.
Results were expressed as a percentage of ACE-inhibitory activity. When possible, the IC50 value was
calculated by plotting the percentage of ACE inhibition as a function of final sample concentration
(base-10 logarithm). IC50 is defined as the sample concentration expressed as mg cheese/mL of the test
solution able to inhibit the ACE activity by 50%.

2.3.3. Dipeptidyl-Peptidase-IV Inhibitory Activity

The dipeptidyl-peptidase IV (DPP-IV) inhibitory activity was determined, as reported in
Tagliazucchi, Martini, Shamsia, Helal, and Conte [27], by using glycine-proline-p-nitroanilide
(Gly-Pro-pNA) as substrate. Briefly, 100 µL of peptide fraction was mixed in a 96-well plate with
135 µL of 0.1 mol/L Tris-HCl buffer (pH 7.0) and 10 µL of DPP-IV solution (0.1 U/mL). After that,
5 µL of Gly-Pro-pNA (6.4 mmol/L) was added, and the reaction mixture was incubated at 37 ◦C for
20 min. The absorbance was assessed at 405 nm using a microplate reader. Data were reported as the
percentage of inhibition of DPP-IV activity.
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2.4. Peptide Profiling by Ultra-High-Performance Liquid Chromatography/High-Resolution Mass Spectrometry
(UHPLC/HR-MS)

The peptide fractions were subjected to UHPLC separation (UHPLC Ultimate 3000, Thermo
Scientific, San Jose, CA, USA), followed by high-resolution mass spectrometry (Q Exactive Hybrid
Quadrupole-Orbitrap Mass Spectrometer, Thermo Scientific, San Jose, CA, USA) analysis for peptide
profiling. Chromatographic separation was performed by using a C18 column (Zorbax SB-C18
Reversed-phase, 2.1 × 50 mm, 1.8 µm particle size, Agilent Technologies, Santa Clara, CA, USA).
The mobile phases, the elution gradient, and the mass spectrometry parameters are described in detail
in Martini, Conte, and Tagliazucchi [28].

MASCOT (Matrix Science, Boston, MA, USA) protein identification software was utilized for
peptide identification. The parameters used for MASCOT analysis were an enzyme, none; peptide
mass tolerance, ±5 ppm; fragment mass tolerance, ±0.12 Da; variable modification, oxidation (M) and
phosphorylation (ST); the maximal number of post-translational modifications permitted in a single
peptide, 4. The identification was confirmed by the manual inspection of fragmentation spectra.

2.5. Identification of Bioactive Peptides

Milk bioactive peptides database (MBPDB) was used for the identification of bioactive peptides in
the peptide fractions [29]. Peptides with 100% sequence homology to previously described peptides
with biological activity were included. Extracted ion chromatograms (EIC) were obtained with a
tolerance of ±5 ppm for each peptide. The integration of the AUP (area under the peak) was carried
out to obtain the semi-quantitative data. Results were reported as AUP/g of cheese.

2.6. Quantification of VPP and IPP by Parallel Reaction Monitoring (PRM)

The lactotripeptides VPP and IPP were quantified, as described in Martini et al., through a
standard addition method [28]. The standards linear range was from 0 to 32 µg/L (final concentrations
in the samples). The same UHPLC mass spectrometry instrument described above was utilized for the
analysis. Each sample (10 µL; 100-fold diluted) was injected two times. The mobile phases, the elution
gradient, and the mass spectrometry parameters were accurately described in detail in Martini et al. [23].
The precursor ions selected for IPP and VPP were [M + H]+ 326.2074 and m/z 312.1918. The product
ion y2

+ at m/z 213.1234 was selected for the quantitation of VPP and IPP.
The genesis algorithm function in the Thermo Xcalibur Quantitative Browser was utilized for

peaks integration. A mass tolerance of 5 ppm was employed for the extraction of target product ions.
Calibration curves were built for each analyzed sample, and the peptide concentration in the sample
was calculated by determining the x-axis intercept that corresponded to the peptide concentration in
the sample.

2.7. Statistical Analysis

All data were provided as mean ± standard deviation (SD) for three replicates for each prepared
peptide fraction. Univariate analysis of variance (ANOVA) with Tukey post hoc test was applied using
GraphPad Prism 6.0 (GraphPad Software, San Diego, CA, USA). The differences were considered
significant with p < 0.05. Principal component analysis (PCA) was performed using the software
package Solo (v. 8.6.1, 2018 Eigenvector Research, Inc., Manson, WA, USA), considering peptides and
biological activities as variables.

3. Results

3.1. Total Peptides Quantification in the Peptide Fractions of 12-Month Ripened Parmigiano Reggiano Samples

In the present study, six Parmigiano Reggiano samples belonging to the category of low-salt and
low-fat (LL) and six samples with high-salt and high-fat content (HH) were analyzed for their total
peptides content by TNBS assay. The average concentration of total peptides found in the 12 PR
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samples was 67.4 mg of leucine equivalent/g of cheese. The difference in peptide concentration was clear
between the two categories (Figure 1A). In the HH group, the peptide concentrations ranged between
41.0 ± 2.1 and 71.8 ± 0.5 mg of leucine equivalent/g of cheese, with an average value of 61.3 mg of
leucine equivalent/g of cheese. Instead, in the LL group, the total average peptides concentration was
73.5 mg of leucine equivalent/g of cheese, higher than that found in the HH group. The range of peptide
concentration in the sample of the LL group was from 65.4 ± 2.0 to 80.3 ± 0.5 mg of leucine equivalent/g
of cheese. The maximal concentration of peptides was found in the LL sample PR23, followed by PR7
and PR2, whereas the HH sample PR14 showed the lowest peptide concentration (Figure 1A).
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PR23 (82.0 and 64.5%, respectively). These samples also showed the highest concentration of peptides 
among all of the 12 analyzed samples. In the HH group, the highest ACE-inhibitory activity was 
found for the sample PR21 (48.3%), which also displayed the highest peptide concentration among 
the sample in the HH group. In this group, three samples (PR13, PR14, and PR20) exhibited 
undetectable or near-to-zero ACE-inhibitory activity. The average ACE-inhibitory activity was 
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Figure 1. Total peptides concentration and biological activities of 12-month ripened Parmigiano-Reggiano
(PR) peptide fractions. (A) Total peptides concentration. (B) Angiotensin-converting enzyme inhibitory
activity. (C) Dipeptidyl-peptidase IV-inhibitory activity. (D) Antioxidant activity. Light grey bars
represent PR samples belonging to the high-salt and high-fat group (HH). Dark grey bars represent
PR samples belonging to the low-salt and low-fat group (LL). HH represents the average values,
considering the samples belonging to the high-salt and high-fat group. LL represents the average
values, considering the samples belonging to the low-salt and low-fat group. Average represents
the mean values considering all of the 12 PR samples. The x-axis reports the code number of PR
samples. Values are means of three assay replications ± standard deviation (SD). Different letters
indicate significantly different values (p < 0.05).

3.2. Biological Activities of the Peptide Fractions of 12-Month Ripened Parmigiano Reggiano Samples

The overall ACE-inhibitory activity of the peptide fractions extracted from HH and LL PR cheeses
is shown in Figure 1B. Larger differences in ACE-inhibitory activity were obtained among the individual
samples. The highest ACE-inhibitory activity was found for the LL samples PR2 and PR23 (82.0 and
64.5%, respectively). These samples also showed the highest concentration of peptides among all of the
12 analyzed samples. In the HH group, the highest ACE-inhibitory activity was found for the sample
PR21 (48.3%), which also displayed the highest peptide concentration among the sample in the HH
group. In this group, three samples (PR13, PR14, and PR20) exhibited undetectable or near-to-zero
ACE-inhibitory activity. The average ACE-inhibitory activity was different between the two studied
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groups, with the LL group showing higher average value with respect to the HH group (Figure 1B).
Indeed, we found a positive correlation between the ACE-inhibitory activity and the concentration of
total peptides (Pearson r = 0.5973; p = 0.040). The IC50 data were calculated for the samples with the
highest inhibitory activity, resulting in values of 2.2 ± 0.2 and 1.7 ± 0.1 mg of cheese/mL of test solution
for sample PR2 and PR23, respectively.

Considerable differences in the DPP-IV-inhibitory activity were also found among samples
(Figure 1C). The DPP-IV-inhibitory activity ranged from 10% to 62.9% in the PR12 and PR16 samples,
respectively. The average DPP-IV-inhibitory activity values in the LL and HH groups were not different
(33.6% and 34.1%, respectively) (Figure 1C).

Antioxidant activity determined with the ABTS assay ranged between 324.7 ± 10.6 and
763.5 ± 19.5 µmol of trolox equivalent/g of cheese in the HH sample PR13 and the LL sample
PR23, respectively (Figure 1D). The average value of antioxidant activity in the LL group was
significantly higher than that calculated for the HH group (541.4 and 441.9 µmol of trolox equivalent/g
of cheese, respectively). Finally, we found a positive correlation between the antioxidant activity and
the number of total peptides (Pearson r = 0.6470; p = 0.023).

3.3. Peptidomic Profile of the Peptide Fractions of 12-Month Ripened Parmigiano Reggiano Samples

Overall, 805 individual peptides were identified in the 12 peptide fractions extracted from
12-month ripened PR cheeses (Table S1). The amount of total identified peptides in the 12 PR samples
ranged between 273 and 424 peptides (Figure S1). With the exception of sample PR21, the majority of
the peptides originated from β-casein, followed by αS1-casein and αS2-casein. Few peptides deriving
from κ-casein were detected only in six samples, whereas no peptides were found from serum proteins,
such as α-lactalbumin and β-lactoglobulin (Figure S1).

The average amount of peptides identified in the HH group was a little higher than that found
in the LL group (340 vs. 322 peptides) (Figure S1). However, the distribution of the percentage of
peptides originating from a single protein was identical between the two groups (Figure S1).

The Venn diagram (Figure 2A) showed that 477 peptides (59.3% of total peptides) were commonly
found in the PR samples between the LL and HH groups. However, 168 (20.9% of total peptides) and
160 (19.9% of total peptides) peptides were found only in PR samples belonging to the LL group and
HH group, respectively. Among the 168 peptides exclusively identified in the LL group PR samples,
44 derived from β-casein, 53 and 52 from αS1-casein and αS2-casein, respectively, and 25 from κ-casein.
A similar distribution between proteins was observed among the 160 peptides uniquely found in
HH group PR samples, with the majority of the peptides originated from αS1-casein, β-casein, and
αS2-casein (56, 55, and 46 peptides, respectively).
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Figure 2. Venn diagrams of peptides obtained from Parmigiano-Reggiano (PR) peptide fractions.
(A) Venn diagram created with all the identified peptides in the 12 PR peptide fractions (see online
supplementary material Table S1 for the peptide sequences). (B) Venn diagram created with bioactive
peptides identified in the 12 PR peptide fractions (see Table 1 for the peptide sequences). HH represents
the samples belonging to the high-salt and high-fat group. LL represents the samples belonging to the
low-salt and low-fat group.
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Table 1. List of the bioactive peptides found in the peptide fractions of Parmigiano Reggiano (PR)
samples at 12 months of ripening a.

Sequence b Fragment Activity c LL Samples HH Samples

β-casein

RELEELNVPGEIVESLSSSEESITR 1–25 Caseinophosphopeptide PR2, PR5, PR7, PR15,
PR18, PR23 PR14

TEDELQDKIHPF 41–52 Anti-microbial PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

DKIHP 47–51 ACE-inhibition
(IC50 = 113 µmol/L)

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

DKIHPF 47–52 ACE-inhibition
(IC50 = 257 µmol/L)

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

LVYPFP 58–63 ACE-inhibition
(IC50 = 132 µmol/L)

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

LVYPFPGPIPNSLPQ 58–72 ACE-inhibition
(IC50 = 18 µmol/L)

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

VYPFPGPIPN 59–68

ACE-inhibition
(IC50 = 325 µmol/L)
Antihypertensive

(−7.0 mmHg)
Antioxidant

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

YPFPGPIPN 60–68

ACE-inhibition
(IC50 = 15 µmol/L)
Antihypertensive

(−7.0 mmHg)
DPP-IV-inhibition

(IC50 = 670 µmol/L)

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

PGPIPN 63–68 Immunomodulatory
Anti-cancer

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

NIPPLTQTPV 73–82 ACE-inhibition
(IC50 = 173 µmol/L) PR2 n.d.

TQTPVVVPPFLQPE 78–91 Antioxidant PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

PVVVPPFLQPE 81–91 Anti-microbial PR2 n.d.

VKEAMAPK 98–105 Anti-microbial
Antioxidant

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

YPVEPF 114–119
Opioid

DPP-IV-inhibition
(IC50 = 125 µmol/L)

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

NLHLPLPLL 132–140 ACE-inhibition
(IC50 = 15 µmol/L)

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

LHLPLP 133–138

ACE-inhibition
(IC50 = 4 µmol/L)
Antihypertensive

(−25.3 mmHg)

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

HLPLP 134–138

ACE-inhibition
(IC50 = 41 µmol/L)
Antihypertensive

(−23.5 mmHg)

PR2 n.d.

KVLPVPQ 159–175

ACE-inhibition
(IC50 = 1000 µmol/L)

Antihypertensive
(−31.5 mmHg)

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

RDMPIQAF 183–190 ACE-inhibition
(IC50 = 209 µmol/L) PR2, PR7, PR15, PR23 n.d.

YQEPVLGPVRGPFPI 193–207 Anti-microbial PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21
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Table 1. Cont.

Sequence b Fragment Activity c LL Samples HH Samples

YQEPVLGPVRGPFPIIV 193–209

ACE-inhibition
(IC50 = 101 µmol/L)

Anti-microbial
Antioxidant

Immunomodulatory

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

QEPVLGPVRGPFPIIV 194–209 ACE-inhibition
(IC50 = 600 µmol/L)

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

VRGPFPIIV 201–209 ACE-inhibition
(IC50 = 600 µmol/L)

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

αS1-casein PR12, PR13, PR14,
PR16, PR20, PR21

RPKHPIKHQGLPQEVLNENLLRF 1–23 Anti-microbial PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

ENLLRF 18–23 ACE-inhibition
(IC50 = 82 µmol/L)

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

FFVAPFPEVFGK 23–34

ACE-inhibition
(IC50 = 52 µmol/L)
Antihypertensive

(−34.0 mmHg)

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

HIQKEDVPSERYLGYLEQLLRLK 80–102 Anti-microbial PR2, PR5, PR7, PR15,
PR18, PR23

PR13, PR16, PR20,
PR21

HIQKEDVPSERYLGYLEQLLRLKKYK 80–102 Anti-microbial PR2, PR5, PR7, PR15,
PR18, PR23

PR13, PR16, PR20,
PR21

YLGYLEQLLR 91–101 Anxiolytic PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

LRLKKYKVPQL 99–109 Anti-microbial PR5, PR7, PR15,
PR18, PR23 PR12, PR13

YKVPQL 104–109

ACE-inhibition
(IC50 = 22 µmol/L)
Antihypertensive

(−12.5 mmHg)

PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

αS2-casein PR12, PR13, PR14,
PR16, PR20, PR21

IVLNPWDQVK 104–113 Anti-microbial PR2 PR14

VPITPT 117–140 DPP-IV-inhibition
(IC50 = 130 µmol/L)

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

TVYQHQKAMKPWIQPKTKVIPYVRYL182–207 Anti-microbial PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

VYQHQKAMKPWIQPKTKVIPYVRYL 183–207 Anti-microbial PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

AMKPWIQPK 189–197 ACE-inhibition
(IC50 = 600 µmol/L)

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

MKPWIQPK 190–197 ACE-inhibition
(IC50 = 300 µmol/L)

PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR14, PR16,
PR20, PR21

WIQPKTKVIPYVRYL 193–207 Anti-microbial PR15, PR18 PR13, PR14

TKVIPYVRYL 198–207 Anti-microbial PR2, PR5, PR7, PR15,
PR18, PR23

PR12, PR13, PR14,
PR16, PR20, PR21

a Abbreviations: ACE, angiotensin-converting enzyme; DPP-IV, dipeptidyl peptidase-IV. b One code letter was
used for amino acid nomenclature. c Potential bioactivities were achieved from the milk bioactive peptides
database (MBPDB) [24]. IC50 represents the concentration of peptide able to inhibit the enzymatic activity by 50%.
The antihypertensive activity was measured on spontaneously antihypertensive rats. n.d. means peptide not
detected in any sample of the specific LL (low-salt and low-fat content) or HH (high-salt and high-fat content) group.

Figure 3 shows the frequency of identification of the peptides in the various samples.
Considering all of the samples, the majority of the peptides (43.9%, corresponding to 354 peptides) were
found only in one or two samples and were, therefore, presumably generated by chance (Figure 3A).
However, 183 peptides (corresponding to 22.7% of total peptides) were found in more than 80% of the
samples (≥10 samples).
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(A) Frequency of identification of the peptides considering all of the 12 PR samples. (B) Frequency
of identification of the peptides in the 6 PR samples belonging to the high-salt and high-fat group.
(C) Frequency of identification of the peptides in the 6 PR samples belonging to the low-salt and low-fat
group. (D) Frequency of identification of the bioactive peptides considering all of the 12 PR samples.
The numbers from 1 to 12 or from 1 to 6 indicate the number of PR samples in which the peptides
were identified. The percentage values are referred to the % of peptides found in the PR samples.
For example, in Figure 3A, 31.9% of single peptides were found in an individual PR sample, whereas
the 10.3% of peptides were common in all of the 12 PR samples.

The frequency of identification between the LL and HH groups was quite similar, with the majority
of the peptides found in just one sample of each group (30.3% and 37.2% of total peptides in HH and
LL group, respectively) (Figure 3B,C). Nevertheless, as observed above, 30.4% and 32.7% of peptides
in the group LL and HH, respectively, were found in more than 80% of the samples (≥5 samples).

3.4. Bioactive Peptides in 12-Month Ripened Parmigiano Reggiano Peptide Fractions and Quantification of
VPP and IPP

Peptides identified in the 12 PR samples were analyzed with the milk bioactive peptide database
(MBPDB) to look for the presence of known bioactive peptides. A total of 40 peptides (Table 1) had
100% sequence homology with bioactive peptides already reported in the literature. The Venn diagram
(Figure 2B) shows that 36 bioactive peptides (90% of total peptides) were commonly present in the PR
peptide fractions between LL and HH groups, whereas four bioactive peptides were only found in the
PR samples from the LL group. The majority of the bioactive peptides identified in the PR peptide
fractions were ACE-inhibitors (18 peptides) and anti-microbial (12 peptides). Six bioactive peptides
were multifunctional bioactive peptides, one was antioxidant, one was anxiolytic, one was a dipeptidyl
peptidase-IV (DPP-IV) inhibitor, and one was a caseinophosphopeptide.

Interestingly, 25 bioactive peptides (corresponding to the 62.5% of identified bioactive peptides)
were found in all of the 12 PR samples, suggesting that these bioactive peptides were commonly
released in 12-month ripened PR cheeses by the action of LAB CEPs and endopeptidases (Figure 3D).

The relative abundance of 36 bioactive peptides was determined and reported in Supplementary
Table S2. Larger differences were obtained among the 12 PR samples and among samples within the
same group. For only two bioactive peptides, the mean abundance was different between the HH
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and LL groups (p < 0.05). For both the peptides, DKIHPF and YQEPVLGPVRGPFPIIV, the mean
abundance was significantly higher in the HH group with respect to the LL group.

As shown in Tables 2 and 3, VPP and IPP were identified and quantified in the peptide fractions
of all the 12 PR samples in amounts ranging from 3.27 ± 0.10 to 16.36 ± 0.96 mg/kg for VPP and from
0.61 ± 0.04 to 2.76 ± 0.17 mg/kg for IPP. The highest concentrations of VPP were found in the HH
samples PR13 and PR20 (16.36 ± 0.96 and 10.49 ± 0.74 mg/kg, respectively). Similarly, the highest
IPP concentrations were found in the HH samples PR13 and PR14 (2.76 ± 0.17 and 1.64 ± 0.09 mg/kg,
respectively). The average amounts of VPP and IPP were similar between the HH and LL groups
(Tables 2 and 3).

Table 2. Amount of VPP and IPP in the peptide fractions of Parmigiano Reggiano (PR) samples at
12 months of ripening belonging to the group HH (high-fat and high-salt).

Sequence * PR12 mg/kg PR13 mg/kg PR14 mg/kg PR16 mg/kg PR20 mg/kg PR21 mg/kg Average mg/kg

VPP 3.41 ± 0.18 a 16.36 ± 0.96 b 6.57 ± 0.31 c 3.64 ± 0.11 a 10.49 ± 0.74 d 4.34 ± 0.34 e 7.47
IPP 0.62 ± 0.04 a 2.76 ± 0.17 b 1.64 ± 0.09 c 0.65 ± 0.02 a 0.99 ± 0.05 d 0.63 ± 0.02 a 1.22

* One code letter was used for amino acid nomenclature. Different letters within the same row mean significantly
different (p < 0.05) values.

Table 3. Amount of VPP and IPP in the peptide fractions of Parmigiano Reggiano (PR) samples at 12
months of ripening belonging to the group LL (low-fat and low-salt).

Sequence * PR2 mg/kg PR5 mg/kg PR7 mg/kg PR15 mg/kg PR18 mg/kg PR23 mg/kg Average mg/kg

VPP 4.84 ± 0.21 a 5.11 ± 0.22 a 5.67 ± 0.29 b 7.90 ± 0.33 c 3.27 ± 0.10 d 6.82 ± 0.31 e 5.60
IPP 0.61 ± 0.04 a 0.86 ± 0.07 b 1.01 ± 0.08 b 1.50 ± 0.09 c 0.70 ± 0.04 a 1.31 ± 0.09 c 1.00

* One code letter was used for amino acid nomenclature. Different letters within the same row mean significantly
different (p < 0.05) values.

3.5. Relationship between the ACE-Inhibitory Activity and ACE-Inhibitory Peptides Profile in 12-Month
Ripened Parmigiano Reggiano Peptide Fractions

Despite the distribution of the identified bioactive peptides in the peptide fractions of the 12 PR
samples was quite similar, we found substantial differences in the biological activities among samples,
especially regarding the ACE-inhibitory activity. The exploratory analysis of the principal components
(PCA) was carried out to obtain a quick comprehension of the data, showing all the possible associations
and networks between ACE-inhibitory peptides, samples, and ACE-inhibitory activity. This approach
provided information associated with the collection of multivariate data, where peptides and activities
might be graphed as a linear combination of orthogonal principal components (PCs). Three principal
components explained about 76% of the total variance. The first two components were selected for the
construction of the bi-dimensional plot (PC1×PC2 biplot) reported in Figure 4, describing the 58.6% of
the total variance cumulative percentage. In particular, the PC1×PC2 biplot indicated an unequivocal
separation of PR2 sample on the second component, resulting in a positive correlation with the ACE
inhibitory activity. This output plot confirmed the results obtained with the in vitro assays. In order to
figure out the responsible peptides for the given distribution and the inhibitory effect, they were added
to the bi-dimensional plot. Interestingly, two samples emerged from the PC analysis, displaying a
possible peptides-ACE inhibition relation. PR2, positively linked to PC2 and separated from the other
samples, was more effective in ACE inhibition, which was positively correlated. As outlined by the
positive correlation on PC2 and positive loadings, PR2 featured the highest amount of NLHLPLPLL,
HLPLP, and LHLPLP. Hereby, considering their very low IC50 values, they could be speculated to be
the causative peptides for the ACE inhibitory effect of PR2. Nevertheless, PR23 was the second higher
effective for its ACE-inhibition and confirmed by the positive scores on PC2. The positive score on
PC1 was related to the presence and concentration of different peptides with respect to those of PR2.
In fact, the positive loadings on PC1 of LHLPLP, LVYPFP, and FFVAPFPEVFGK reflected their higher
concentration in PR23 than PR2, with the exception of LHLPLP, which was still present in high amount
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in PR2. These latter peptides, positively linked on PC2, also recording very low IC50 values, could be
considered responsible for the ACE-inhibitory effect of PR23. Hence, these results might suggest a
potential impact of the manufacturer process (LL) in the specific bioactive peptides release and the
studied biological effect.
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4. Discussion

Strong scientific pieces of evidence have suggested that a diet high in fat and salt might result
in an increased onset of hypertension and cardiovascular diseases [30,31]. Dietary intervention by
reducing the intake of fat and salt has seemed to be the most promising way to decrease the onset of
cardiovascular diseases in the population. Dietary salt intake reduction has been associated with a
decrease in blood pressure and in the mortality of cardiovascular diseases [30]. Similarly, a decrease in
fat intake has been correlated with a reduction in body mass index and weight, decreasing the risk of
cardiovascular diseases [31].

Even if several studies have unraveled the effect of salt and fat reduction on the sensory and safety
properties of cheese, no studies on the impact of salt and fat reduction on the biological properties and
peptidomic profile of cheese have been carried out until now. Therefore, this work was designed to
deal with this topic by analyzing the differences in proteolysis, biological activities, and the release
of bioactive peptides in PR samples previously divided into two subgroups, namely, high-fat and
high-salt (HH) group and low-fat and low-salt (LL) group [11].

Proteolysis is one of the most important biochemical events occurring during cheese processing
and ripening [6]. The hydrolysis of milk caseins is initiated by chymosin; proteases already present in
milk, such as plasmin, as well as proteases present in somatic cells and psychrotrophic bacteria [6].
Large oligopeptides produced by chymosin and endogenous proteolytic enzymes represent the
substrate for proteinases and peptidases existing in S-LAB and NS-LAB [32]. Hydrolysis of caseins and
casein-derived large oligopeptides is carried out by LAB CEPs, which are able to release oligopeptides
of about 5–30 amino acids length [3]. These peptides can be transported inside the cell, where
cytoplasmic peptidases may further hydrolyze them into smaller peptides and free amino acids [3].
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Sforza et al. [6] showed that peptides released by the action of chymosin and endogenous proteolytic
enzymes dominated the peptide profile of PR cheese at the beginning of the curding process and then
were promptly hydrolyzed during the first hours after curding by the action of S-LAB proteinases.
After 10 months of ripening, a dramatic alteration in the peptide profile was observed, as NS-LAB
became the predominant LAB population present in the PR cheese.

Evaluation of the concentration of free amino groups (a measure of total peptides and amino acids)
in cheeses from HH and LL group showed that samples from the LL group contained a higher amount
of free amino groups with respect to the samples from the HH group, suggesting a more pronounced
proteolytic activity. Congruently, the amount of free amino acids has increased significantly with
decreasing fat content in Cheddar cheese [22]. These results also agreed with previous observations in
Cheddar cheese, where a decrease in NaCl content has significantly enhanced proteolysis [17,33–35].
By contrast, in Prato cheese, NaCl reduction does not affect proteolysis [36]. Increased salt content
has enhanced the activity of LAB CEPs and some peptidases, such as PepX and PepI, in Lactobacillus
lactis [37]. In PR cheese with high-salt content, L. rhamnosus is predominant, whereas, in contrast,
L. paracasei is prevalent in PR cheese with low-salt content [11]. Proteolytic activity analysis has revealed
that the L. rhamnosus strains isolated from high-salt PR samples have higher hydrolytic ability than the
L. paracasei strains isolated from PR samples at low-salt content [11]. Intracellular peptide accumulation
is considered as an osmo-protective mechanism in LAB during growth in the high-salt medium [37].
Therefore, the lower concentrations of peptides found in HH group PR samples may be related to an
increased ability of the NS-LAB population, inhabiting high-salt samples to counter-balance low water
activity values through the peptide intake. Alternatively, we can speculate that L. paracasei is more
prone than L. rhamnosus to lysis, releasing intracellular enzymes into the cheese environment.

Biological activity analysis revealed great variation among samples, though the average
ACE-inhibitory and antioxidant activities were higher in the LL group than in the HH group.
Different factors contributed to the high inter-sample variability observed in this work. Variations in
milk quality and content in somatic cells impact cheese-making yield and the extent of proteolysis
by indigenous milk proteases [38–40]. Another source of variation could be the natural whey starter
used in the production of PR cheese, which is a complex association of different LAB species and
distinct intra-species biotypes [41–44]. NS-LAB microbiota represents a further source of variability as
distinct NS-LAB fractions have been found in different factories [9,45,46]. This would result in a diverse
pattern or amount of released bioactive peptides, which, in turn, may affect the biological activity of
the samples. Despite the “noise” effects of these variables, we observed significant inter-group (LL vs.
HH) differences in the tested biological activities, which might reflect the effect of different fat and salt
concentrations. These two compositional parameters have an impact on the composition of microbial
populations and the associated proteolytic activities [11], which modulate the subsequent release of
peptides with biological activities.

It is hard to compare the results of the ACE-inhibitory activity of the different studies since
different ACE-inhibition assays and extraction methods have been applied. Indeed, the way for
reporting IC50 values is not always uniform as the data may be a function of total protein content, total
peptide content, or amount of cheese. In this study, we reported the IC50 data as the mg of cheese in the
test solution necessary to obtain an inhibition of the ACE activity of 50%. In this respect, our data were
in accordance with that reported by Bütikofer, Meyer, Sieber, and Wechsler [47] for hard and semi-hard
cheeses. The results on DPP-IV-inhibitory activity were lower than those previously reported for the
peptide fraction of gouda-type cheese [48], whereas antioxidant activity data were comparable to those
already reported in the literature for PR and Cheddar cheeses peptide fractions [49,50].

Among the 805 peptides identified in the different samples, 59.2% were commonly found in at
least one sample in LL and HH groups. However, only 22.7% of peptides were identified in more
than 80% of the sample, suggesting that these peptides were produced by the specific action of LAB
proteinase/peptidases and were characteristic and typical of 12-month ripened PR cheeses.
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The majority of the 183 peptides typical of 12-month ripened PR cheeses originated from β-casein.
Among them, 44 peptides were from the N-terminal part of the protein. Several peptides in this
group were from sequence 1–29 of β-casein. Most of these peptides originated from the specific action
of LAB CEPs, as indicated by the typical CEPs cleavage site L6-N7, N14-K15, E21-S22, N27-K28, and
K29-I30 [49–51]. It is important to note that the peptide bond K28-K29 is a preferential cleavage site for
milk plasmin [51].

Only 16 peptides were found from the C-terminus of β-casein. It is well known that LAB CEPs
hydrolyze preferentially the C-terminus of β-casein [52]. Therefore, it was possible that peptides
released from the C-terminus were hydrolyzed to shorter peptides by the action of LAB CEPs and LAB
endopeptidases. Despite peptide Y193-V209 can be originated by the action of chymosin [6], most of the
C-terminus peptides derived from CEPs hydrolysis, as depicted by the numerous characteristic CEPs
cleavage sites [52–54].

The principal chymosin cleavage site in αS1-casein is the peptide bond F23-F24 releasing the
peptide R1-F23 [6]. This peptide was also detected in the present study as typical of 12-month ripened
PR cheese together with additional four peptides derived from the action of LAB CEPS and LAB
endopeptidases on peptide R1-F23. Further peptides (F24-K34, F24-K36, and F24-E38) detected at the
beginning of the curding in PR presumably released by the action of chymosin were also found as
typical of 12-month ripened PR cheese [6]. Several peptides deriving from the CEPs action on these
peptides were also identified in more than 80% of the samples.

Among the 40 identified bioactive peptides, 15 have been already reported in Parmigiano
Reggiano cheeses at different ripening times [28], whereas the remaining 25 bioactive peptides were
reported for the first time in this study. A total of 13 peptides were ACE-inhibitors, and most of
them have been already found in cheese or other fermented dairy products [3]. Some of these
identified peptides have been previously reported as able to decrease blood pressure in vivo [3].
The β-casein-derived peptide KVLPVPQ, previously isolated from a commercial functional yogurt,
has shown strong antihypertensive effects (−31.5 mmHg) at a dosage of 2 mg/kg in spontaneously
hypertensive rats [55,56]. The peptide LHLPLP, previously identified in various cheeses (such as
Grana Padano, Parmigiano Reggiano, Gorgonzola, and Cheddar), exhibited very low IC50 value versus
ACE and has been found able to decrease blood pressure (−25.3 mmHg at a dosage of 3 mg/kg) in
spontaneously hypertensive rats [57–60]. Additional peptides found in all of the 12 PR samples showed
potent ACE-inhibitory activity, similar to the peptides NLHLPLPLL and YPFPGPIPN, both showing
IC50 value of 15 µmol/L, and the peptide YQEPVL, displaying an IC50 value of 8 µmol/L [61–63].
Some other peptides exhibited a high inhibitory effect against ACE and in vivo antihypertensive
effect. The αS1-casein-derived peptide YKVPQL was detected in 11 out of 12 PR samples and has
been previously identified as an in vitro and in vivo antihypertensive peptide [59]. Similarly, also the
β-casein-derived peptide HLPLP has exhibited in vitro and in vivo antihypertensive effect, but it was
identified only in one sample (PR2) belonging to the LL group [64].

The lactotripeptides VPP and IPP, previously reported as antihypertensive molecules in vivo on
humans, were quantified in the peptide fractions of the 12 PR samples [65]. The quantitative data
were in agreement with the concentrations of VPP and IPP, previously reported in the PR sample at
12 months of ripening [28,57].

Because all of the PR samples used in this study were produced following the PDO disciplinary,
which harmonizes and uniforms the processing conditions, it is unlikely that dissimilarity in heating
up and ripening phases may account for the substantial variation in the number of bioactive peptides
observed among the individual samples. Furthermore, qualitative and semi-quantitative data suggested
that differences in salt and fat content only partially affected the bioactive peptides profile of PR samples.
Indeed, previous studies have suggested that raw milk used for PR cheese-making [66], as well as
S-LAB used for cheese processing, has a preponderant effect on the ACE-inhibitory properties and
bioactive peptides production during cheese ripening [67,68]. Therefore, it is likely that the differences
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found in this study among the 12 PR samples were a consequence of distinct populations of S-LAB and
NS-LAB during cheese-making and ripening, respectively.

5. Conclusions

The Production Specification regulated by the Consortium of PR cheese governs the PR
cheese-making procedures, providing general guidelines for brining and natural skimming of evening
milk, the two main steps that affect salt and fat contents. In particular, it established the fat/casein ratio
in vat milk lower than 1.1. Therefore, strong inter-dairy operational variability accounts for variation
in salt and fat content in PR cheese. In this study, we first considered how these differences in salt and
fat levels might affect the proteolytic degree and biological activities in PR samples after 12 months of
ripening, as well as their content in the bioactive peptide. We delineated the general trend that low-salt
and low-fat contents positively affected proteolysis and biological activities contents in PR cheese,
whereas they did not negatively affect the content in bioactive peptides, which exhibited a dairy-specific
pattern. Our results provided a framework on the impact of salt and fat content on the proteolytic
activity and on the biological effects, taking into account all the possible existing variables (such as
milk batches, S-LAB cultures, etc.) attending the PR manufacturing process. Further investigations are
required to establish the extent of these salt/fat reductions and the impact on other technological and
organoleptic parameters also during further stages of ripening. This pilot work might pave the way
for future tailored standard dairy processes basing only on the salt and fat content variation. The data
collected here sketched out possible tailoring to boost the cheese-making technological process in tune
with WHO’s guidelines on consumer’s health.
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Reggiano samples.
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