11 research outputs found

    ΠšΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Co, Cu, Mn оксидных ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… золь-гСль ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ с Π³ΠΎΡ€Π΅Π½ΠΈΠ΅ΠΌ, Π² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π½ΠΈΠ·ΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ окислСния оксида ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π°

    Get PDF
    The synthesis of catalysts based on cobalt, copper and manganese oxides by sol-gel method with combustion was carried out, and their catalytic activity was studied in the reaction of low-temperature oxidation of carbon monoxide to dioxide. Oxides of cobalt, copper and manganese, as well as their double oxides (Co–Mn, Cu–Mn and Co–Cu) were synthesized. X-ray phase analysis showed the formation of manganites and oxides of corresponding metals in the Co–Mn and Cu–Mn systems. It was revealed that in the Co–Cu system only oxides of separate metals are formed. It was found that cobaltmanganese and copper-manganese oxide systems synthesized by sol-gel combustion method exhibit high catalytic activity in the low-temperature (110–140 0C) conversion of carbon monoxide into dioxide. One-step synthesis of Cu–Mn/Al2O3 catalytic system was also carried out by sol-gel method with burning precursors with binder hydrogel (Al2O3), and its high activity in low-temperature conversion of carbon monoxide was revealed. The catalytic systems were investigated by X-ray diffraction, IR spectral methods, BET, SEM. The results obtained show the possibility of obtaining active multicomponent oxide catalysts in low-temperature oxidation of carbon monoxide by technologically simple sol-gel combustion method.Β ΠžΡΡƒΡ‰Π΅ΡΡ‚Π²Π»Π΅Π½ синтСз ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ² Π½Π° основС оксидов ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π°, ΠΌΠ΅Π΄ΠΈ ΠΈ ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π° золь-гСль ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ с Π³ΠΎΡ€Π΅Π½ΠΈΠ΅ΠΌ ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½Π° ΠΈΡ… каталитичСская Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π½ΠΈΠ·ΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ окислСния монооксида ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° Π² диоксид. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ оксиды ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π°, ΠΌΠ΅Π΄ΠΈ ΠΈ ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΡ… Π΄Π²ΠΎΠΉΠ½Ρ‹Π΅ оксиды Co–Mn, Cu–Mn ΠΈ Co–Cu. Π Π΅Π½Ρ‚Π³Π΅Π½ΠΎΡ„Π°Π·ΠΎΠ²Ρ‹ΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² систСмах Co–Mn ΠΈ Cu–Mn ΠΌΠ°Π½Π³Π°Π½ΠΈΡ‚ΠΎΠ² ΠΈ оксидов ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ². Π’ систСмС Co–Cu выявлСно ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ оксидов этих ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ². УстановлСно, Ρ‡Ρ‚ΠΎ ΠΊΠΎΠ±Π°Π»ΡŒΡ‚ΠΈ мСдь-ΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Π΅ оксидныС систСмы, синтСзированныС золь-гСль ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ с Π³ΠΎΡ€Π΅Π½ΠΈΠ΅ΠΌ, ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΠΊΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π² Π½ΠΈΠ·ΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠΌ (110–140 Β°Π‘) ΠΏΡ€Π΅Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠΈ монооксида ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° Π² диоксид. ΠžΡΡƒΡ‰Π΅ΡΡ‚Π²Π»Π΅Π½ одностадийный синтСз каталитичСской систСмы Cu–Mn/Al2O3 золь-гСль ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ со сТиганиСм прСкурсоров с Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π»Π΅ΠΌ ΡΠ²ΡΠ·ΡƒΡŽΡ‰Π΅Π³ΠΎ (Al2O3) ΠΈ установлСна Π΅Π΅ высокая Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π² Π½ΠΈΠ·ΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠΉ конвСрсии монооксида ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π°. ΠšΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ систСмы исслСдовали Π Π€-, ИК-ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ, Π‘Π­Π’, БЭМ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ получСния Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Π² Π½ΠΈΠ·ΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠΌ окислСнии монооксида ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° ΠΌΠ½ΠΎΠ³ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Ρ… оксидных ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ² тСхнологичСски простым золь-гСль ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ с Π³ΠΎΡ€Π΅Π½ΠΈΠ΅ΠΌ.

    Influence of barrier discharge plasma on thermophysical, dielectric, conductivity and photoluminescence properties of low-density polyethylene doped with CaGa

    No full text
    The effect of barrier discharge plasma on the thermophysical, dielectric, conductivity and photoluminescent properties of CaGa2S4:Eu2+doped low-density polyethylene have been investigated. It is shown that the enthalpy and entropy of melting and solidification decrease sharply with the inclusion of filler (3 vol%) and then increase with increasing filler concentration. At the same time, these physical quantities increases in all cases after exposure to the gas discharge. This increase is negligible for pure polyethylene, but significant for composites. With increasing filler concentration, the dielectric permittivity increases and agrees well with the Maxwell–Garnett theory. It is shown that the conductivity has a hopping character and mainly increases with increasing filler concentration. Dielectric permittivity increases and conductivity as well as photoluminescence decrease after the action of gas discharge
    corecore