11 research outputs found
ΠΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Co, Cu, Mn ΠΎΠΊΡΠΈΠ΄Π½ΡΡ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠΎΠ², ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ Π·ΠΎΠ»Ρ-Π³Π΅Π»Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Ρ Π³ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ, Π² ΡΠ΅Π°ΠΊΡΠΈΠΈ Π½ΠΈΠ·ΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΡ ΠΎΠΊΡΠΈΠ΄Π° ΡΠ³Π»Π΅ΡΠΎΠ΄Π°
The synthesis of catalysts based on cobalt, copper and manganese oxides by sol-gel method with combustion was carried out, and their catalytic activity was studied in the reaction of low-temperature oxidation of carbon monoxide to dioxide. Oxides of cobalt, copper and manganese, as well as their double oxides (CoβMn, CuβMn and CoβCu) were synthesized. X-ray phase analysis showed the formation of manganites and oxides of corresponding metals in the CoβMn and CuβMn systems. It was revealed that in the CoβCu system only oxides of separate metals are formed. It was found that cobaltmanganese and copper-manganese oxide systems synthesized by sol-gel combustion method exhibit high catalytic activity in the low-temperature (110β140 0C) conversion of carbon monoxide into dioxide. One-step synthesis of CuβMn/Al2O3 catalytic system was also carried out by sol-gel method with burning precursors with binder hydrogel (Al2O3), and its high activity in low-temperature conversion of carbon monoxide was revealed. The catalytic systems were investigated by X-ray diffraction, IR spectral methods, BET, SEM. The results obtained show the possibility of obtaining active multicomponent oxide catalysts in low-temperature oxidation of carbon monoxide by technologically simple sol-gel combustion method.Β ΠΡΡΡΠ΅ΡΡΠ²Π»Π΅Π½ ΡΠΈΠ½ΡΠ΅Π· ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΎΠΊΡΠΈΠ΄ΠΎΠ² ΠΊΠΎΠ±Π°Π»ΡΡΠ°, ΠΌΠ΅Π΄ΠΈ ΠΈ ΠΌΠ°ΡΠ³Π°Π½ΡΠ° Π·ΠΎΠ»Ρ-Π³Π΅Π»Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Ρ Π³ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΈ ΠΈΠ·ΡΡΠ΅Π½Π° ΠΈΡ
ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π² ΡΠ΅Π°ΠΊΡΠΈΠΈ Π½ΠΈΠ·ΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΡ ΠΌΠΎΠ½ΠΎΠΎΠΊΡΠΈΠ΄Π° ΡΠ³Π»Π΅ΡΠΎΠ΄Π° Π² Π΄ΠΈΠΎΠΊΡΠΈΠ΄. Π‘ΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Ρ ΠΎΠΊΡΠΈΠ΄Ρ ΠΊΠΎΠ±Π°Π»ΡΡΠ°, ΠΌΠ΅Π΄ΠΈ ΠΈ ΠΌΠ°ΡΠ³Π°Π½ΡΠ°, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΈΡ
Π΄Π²ΠΎΠΉΠ½ΡΠ΅ ΠΎΠΊΡΠΈΠ΄Ρ CoβMn, CuβMn ΠΈ CoβCu. Π Π΅Π½ΡΠ³Π΅Π½ΠΎΡΠ°Π·ΠΎΠ²ΡΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΡΠΈΡΡΠ΅ΠΌΠ°Ρ
CoβMn ΠΈ CuβMn ΠΌΠ°Π½Π³Π°Π½ΠΈΡΠΎΠ² ΠΈ ΠΎΠΊΡΠΈΠ΄ΠΎΠ² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ
ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ². Π ΡΠΈΡΡΠ΅ΠΌΠ΅ CoβCu Π²ΡΡΠ²Π»Π΅Π½ΠΎ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠΊΡΠΈΠ΄ΠΎΠ² ΡΡΠΈΡ
ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ². Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΊΠΎΠ±Π°Π»ΡΡΠΈ ΠΌΠ΅Π΄Ρ-ΠΌΠ°ΡΠ³Π°Π½ΡΠ΅Π²ΡΠ΅ ΠΎΠΊΡΠΈΠ΄Π½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ, ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ Π·ΠΎΠ»Ρ-Π³Π΅Π»Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Ρ Π³ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ, ΠΏΡΠΎΡΠ²Π»ΡΡΡ Π²ΡΡΠΎΠΊΡΡ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π² Π½ΠΈΠ·ΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠΌ (110β140 Β°Π‘) ΠΏΡΠ΅Π²ΡΠ°ΡΠ΅Π½ΠΈΠΈ ΠΌΠΎΠ½ΠΎΠΎΠΊΡΠΈΠ΄Π° ΡΠ³Π»Π΅ΡΠΎΠ΄Π° Π² Π΄ΠΈΠΎΠΊΡΠΈΠ΄. ΠΡΡΡΠ΅ΡΡΠ²Π»Π΅Π½ ΠΎΠ΄Π½ΠΎΡΡΠ°Π΄ΠΈΠΉΠ½ΡΠΉ ΡΠΈΠ½ΡΠ΅Π· ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ CuβMn/Al2O3 Π·ΠΎΠ»Ρ-Π³Π΅Π»Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΎ ΡΠΆΠΈΠ³Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠ΅ΠΊΡΡΡΠΎΡΠΎΠ² Ρ Π³ΠΈΠ΄ΡΠΎΠ³Π΅Π»Π΅ΠΌ ΡΠ²ΡΠ·ΡΡΡΠ΅Π³ΠΎ (Al2O3) ΠΈ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° Π΅Π΅ Π²ΡΡΠΎΠΊΠ°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π² Π½ΠΈΠ·ΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠΉ ΠΊΠΎΠ½Π²Π΅ΡΡΠΈΠΈ ΠΌΠΎΠ½ΠΎΠΎΠΊΡΠΈΠ΄Π° ΡΠ³Π»Π΅ΡΠΎΠ΄Π°. ΠΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈ Π Π€-, ΠΠ-ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ, ΠΠΠ’, Π‘ΠΠ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π°ΠΊΡΠΈΠ²Π½ΡΡ
Π² Π½ΠΈΠ·ΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠΌ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΠΈ ΠΌΠΎΠ½ΠΎΠΎΠΊΡΠΈΠ΄Π° ΡΠ³Π»Π΅ΡΠΎΠ΄Π° ΠΌΠ½ΠΎΠ³ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΡ
ΠΎΠΊΡΠΈΠ΄Π½ΡΡ
ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠΎΠ² ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ ΠΏΡΠΎΡΡΡΠΌ Π·ΠΎΠ»Ρ-Π³Π΅Π»Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Ρ Π³ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ.
Influence of barrier discharge plasma on thermophysical, dielectric, conductivity and photoluminescence properties of low-density polyethylene doped with CaGa
The effect of barrier discharge plasma on the thermophysical, dielectric, conductivity and photoluminescent properties of CaGa2S4:Eu2+doped low-density polyethylene have been investigated. It is shown that the enthalpy and entropy of melting and solidification decrease sharply with the inclusion of filler (3 vol%) and then increase with increasing filler concentration. At the same time, these physical quantities increases in all cases after exposure to the gas discharge. This increase is negligible for pure polyethylene, but significant for composites. With increasing filler concentration, the dielectric permittivity increases and agrees well with the MaxwellβGarnett theory. It is shown that the conductivity has a hopping character and mainly increases with increasing filler concentration. Dielectric permittivity increases and conductivity as well as photoluminescence decrease after the action of gas discharge